First Shot on
May 15

Blast

Be 29 comes in at $40,000 \mathrm{ft}$, drops bomb 3.0 miles before reaching target, makes 100° turn with 3 mile radius of curvature. The bomb explodes 49 seconds later. The plane is than 10 miles away in total distance and plane is jolted as in heavy flak by between. 15 and . 20 psi. (. 'S5 psi considered safe)

Visible Radietion

Heating
(very strong in ultraviolot)
50 suns for . 002 seconds at $10,000 \mathrm{yds}$ 2 suns between . 02 and 1 second 2/t (minutes) suns thereafter

Pine wood $\quad 400^{\circ}$ at 1850 yards (charring) 1000 at 2700 yards

Hetal heats $1 / 80$ as much as the pine and only melts in ball of fire.

If skin and tissue resemble pine wood, it will char at 1350 yards and produce physiological damage.

In the initial burst lasting one minute at a distance R (yds):

Roentgen units $=\frac{400,000}{(R / 500)^{2}} \times 10^{-(R / 500)}$
$(R / 500)^{2}$
This amounts to 1000 Bontzens at 1000 yards or 44 Roentigen at 1500 yards and drops rapidly thergafter 23

The fission products produce $\frac{7.6 \times 10^{+23}}{t} \frac{\text { VEV gamnas }}{\text { hour }}$
where t is the time after the explosion in hours. This equation is valid after one minute. In the first shot about 0.2% of the fission products will be distributed to a radius of 1500 feet on the surface of water. The radioactivity at the center and 3 feet above the water will be

t (hours	Roentgen/hour
0.5	143
1	58
2	19
4	7

After the second shot 5% of fission are uniformly distributed in water in a cylinder of 1000^{\prime} radius and 180^{\prime} depth to give 3 feet above water surface

Roentgen per hour $=62 / t$ (hours)
The radioactive water moves at a velocity of 0.5 miles per hour towards the west and will tinerefore soon move out of the target araa.

The activity in the center of cloud will be approxinately
Roentgen/hour $=720 / t$ (hours)
assuming that the center of the cloud is at $40,000 \mathrm{ft}$ and occupies 10 cubic miles after the first hour. The induced activity of the sea water is negligible (a few percent of activity of deposited fission products). The induced activity on any ship which remainsafloat will be nesifigible.

From experinental results at Trinity
$\frac{\text { no. neutrons }}{\mathrm{cm}^{2}}=2.24 \times 10^{12} \times 10^{-(\mathrm{R}(\text { meters }) / 840)^{2}}$

R (meters)	nog neutrons
100	2×10^{2}
600	1×12
1000	1×109
1500	1×105

