DOCUMENT DOES NOT CONTAIN ELI

October 8, 1987
Repository P. N.N.L.
collection Marshall Islands cox No. 5689
folDer Marshall Islands

409943

Telex 15-2874

Dr. Henry I. Kohn Chairman 1203 Shattuck Avenue Berkeley, CA 94709

Dear Dr. Kohn:
Enclosed are copies of the calculations used to project health effects for the Northern Marshall Islands used in the book, "The Meaning of Radiation for Those Atolls in the Northern Part of the Marshall Islands That Were Surveyed in 1987." I believe this will fully explain the values in the book, but if you have questions please call.

I apologize for having to cancel our meeting last week. I returned from Europe to an unexpectedly full schedule.

I hope your work for the Marshallese goes well.
With best regards,

W. J. Bair, Ph.D.

Manager
Life Sciences Center
WJB: kb
Enclosures

Potential health effects for persons living in the northern Marshall Islands are calculated using the same assumptions and same methods used for the Bikini population (copy attached). Risk coefficients from both BEIR I and BEIR III were used providing notmonly a range of estimates but also a comparison of the most conservative (linear, relative risk model) with what would be described by many radiation biologists as the most probable (linear-quadratic, absolute model).

POPULATION ESTIMATES

The following population estimates are derived by simple ratios from the Bikini calculation (copy attached) for a population of 550 . These calculations predicted 1277 births, 164 deaths over a period of 30 years and a final population of 1684 after 30 years for an initial population of 550 .

Deaths in 30 years: $\frac{164}{550}=\frac{\text { deaths in population of interest }}{\text { initial population of interest }}$

Births in 30 years: $\frac{1277}{550}=\frac{\text { births in population of interest }}{\text { initial population of interest }}$

Population after 30 years: $\quad \frac{1684}{550}=\frac{\text { population after } 30 \text { years }}{\text { initial population of interest }}$

Also from the Bikini population, the estimate of the full 30 year dose received by children born during the 30 year period is 0.36 of the dose persons living the entire 30 year period would receive.

RISK COEFFICIENTS

Both BEIR I and BEIR III risk coefficients are used. These are as follows:

BEIR I
Cancer--Minimum: , Absolute risk of leukemia ($26 \times 10^{-6} \mathrm{rem}^{-1}$) + 30 year elevated risk for other cancers $\left(61 \times 10^{-6} \mathrm{rem}^{-1}\right)=87 \times 10^{-6} \mathrm{rem}^{-1}$.

Maximum: Relative risk of leukemia $\left(37 \times 10^{-6} \mathrm{rem}^{-1}\right)+$ lifetime elevated risk (421 $\left.\times 10^{-6} \mathrm{rem}^{-1}\right)=$ $458 \times 10^{-6} \mathrm{rem}^{-1}$.

Genetic Effects: 0.2\% per rem in first generation.

BEIR III
Cancer--Minimum: Absolute lifetime risk of cancer for continuous exposure, $67 \times 10^{-6} \mathrm{rad}^{-1}$ (low LET) based on linear quadratic mode?.

Maximum: Relative lifetime risk of cancer for continuous exposure, $430 \times 10^{-6} \mathrm{rad}^{-1}$, based on linear model.
Genetic Effects--Minimum: $\frac{5}{75} \times 10^{-6}$ increase per rem in first generation.
Maximum: $7_{5}^{75} \times 10^{-6}$ increase per rem in first generation.
xsiy yjonvo

$$
3
$$

$$
6
$$

in

date in puple -
called timetr buftaio od $30,152=$ DRAT
Table 21. Maximum annual wholebody and bone marrow doses in mrem/y for alternate diets.

Likiep

Rikuraru	3.4	3.6	16	14	17	15	
Likiep	5.2	5.4	25	2	26	2.51	
Agony	3.7	4	20	18	21	20	
Kapenor	3.1	3.2	3.4	14	13	15	14

Taka
Taka
4.8 -
6.26 .17 .77 .0
$4.1 \quad 3.6 \quad 4.5 \quad 4.0$
4.93 .8
$7.4 \% 3$

Eiluk
Jemo
Jemo
Bikar
Jaboerukku
Bikar
$4.34224 .7 \quad 4.5$

Rongerik
Rongerik
Eniwetak
Mejit
Mejit
$6.1 \leftarrow 8: 810$
$6.4 \quad 6.6$

Rongelap
Naen
$330325 \quad 350330 \quad 505 \quad 470 \quad 796 \quad 580$
Kabelle
$130 \sim 140 \sim$
200300.2 .

Mellu
Eniaetok
Rongelap
Arbar
$9291 \quad 97 \sim 212700284270$
95 - $96100 \quad 154 ; 5 * 172=2$

56	5	58	112	138	135
34	35	37	29	57	55
90					

Table 21. (Continued)

$$
\begin{aligned}
& \text { Datio A Pupe - callef.... Tre to } \\
& \text { Retfofor, Ont 30,1952 }
\end{aligned}
$$

Table 22. The 30-y integral wholebody and bone marrow dose in rem for alternate diets.

Table 22. (Continued).

SUMMARY DATA - BOOK FOR NORTHERN MARSHALLS, OCTOBER 31, 1982
30 Year
Excess Birth
Defects
$0.0002-0.002$
$0.0002-0.002$
$0.0002-0.002$ 0.0002-0.003 $0.002-0.03$
$0.002-0.03$
$0.007-0.1$
$0.007-0.1$
$0.002-0.03$
$0.002-0.03$
$0.003-0.05$
$0.003-0.05$ 0.0002-0.003 0.0002-0.002 $0.0005-0.008$
$0.0004-0.006$
$0.002-0.03$
$0.002-0.03$ 0.0006-0.009 0.0006-0.009 $0.003-0.05$
$0.003-0.05$
$\triangleright 0^{\circ} 0-\varepsilon 00^{\circ} 0$

$\circ 0^{\circ} 0-\varepsilon 00^{\circ} 0$ * For uninhabited islands, calculations were based on possibility of 100 people living there in the future.

$\operatorname{Taka}\left(100^{\star}\right)$
$\operatorname{Jemo}(100 *)$
utrik (328)
Bikar (100*)

Ailuk (420)

Mejit (329)
A. $32 \times 3 \approx 100$
B. $32 \times 3=96(/ 04)$
A. $6.2 \times 3 \approx 20$
B. $6.2 \times 3=18.6(20)$

A. $9.6 \times 3 \approx 30$ | 200 | |
| :--- | ---: |
| 200 | $\begin{array}{r}230 \\ 230 \\ \hline\end{array}$ | 1800

100

560
530 530
140
140
440
330
530
490
520
520
660
650 530
140
140
440
330
530
490
520
520
660
650 530
140
140
440
330
530
490
520
520
660
650 530
140
140
440
330
530
490
520
520
660
650 530
140
140
440
330
530
490
520
520
660
650
700
710
$0 \varepsilon \angle$
$0 \varepsilon \angle$
089
069
008 L
069
069
089
068
006
009
$0<5$
읐익 8 BO
8
3400
300
3800
2100 150 1800 2100 560 OTL

Please call if you have any questions.

Letter to Dr. Kohn
February 8, 1982
Page 2

Sincerety yours, $\int_{\text {Bair, ph.o. }}$
Manager
Environment, Health and Safety Research Program

WUB: 1m
Enclosures as stated
CC: J. W. Healy
W. L. Robison
B. W. Wachholz

EPIDEMIOLOGY RESOURCES, INC.

QEETUSD
January $26,1982 \because \because \sim 2$
1203 Shattuck Avenue
Berkeley CA 94709
415-526-0141

Dr. W. J. Bair
Environment, Health and Safety Research Program
Batelle Pacific Northwest Laboratories
Richland, WA 99352
Dear Dr. Bair:
In your letter of December 29th, you were good enough to say that you would send us a copy of a summary of the risk calculations, on the Bikini problem,

I wonder if that summary has been completed, and if so, could it be sent to us now. It would be very helpful, since we are being pressed to comment on them.

Henry I. Kohn M.D.

I. ASSUMPTIONS

Estimates of cancer and birth defect risks for the Bikini populations were based on a number of assumptions. Some of these assumptions resulted from consultation with other scientists including members of the BEIR committees.

1. Risk coefficients from BEIR-I were used because BEIR-III had not been accepted by any U.S. government agency. We elected to use the values as given in BEIR-I rather than the revised values based on increased age of the population shown in Table $V-4$ of BEIR-III.
2. For estimates of cancer risk both the relative risk coefficient and the absolute risk coefficient were used to give a range of estimated risk. The absolute risk coefficient gives a lower value, is less variable with the population and is not dependent upon the spontaneous cancer incidence, which is not known for the Bikini population. The relative risk coefficient gives a high value, but since it is based on the spontaneous cancer incidences, which is unknown for the Bikini population, it is probably less reliable than the estimates calculated from the absolute risk coefficients.
3. For estimating increased cancer incidences, the bone marrow dose was used because it was slightly higher than the whole body dose. This probably introduced a small element of conservation.
4. For estimating birth defects neither BEIR-I or BEIR-III is very clear about what is meant by parental dose, thus it is not clear whether birth defects should be based on the dose to one parent or both parents. In the latter case, the 30 -year whole body dose would be doubled. We assumed the BEIR-I risk of 0.2% rem was based on both parents being irradiated. Also because we believed the risk coefficient from BEIR-I
was already conservative based on comparisons with BEIR-III, we elected to use the 30 -year whole body dose as provided us--not doubled.
5. For the 140 persons who returned to Bikini and were removed in August 1978, it was assumed that no children will be conceived by persons above age 40 , that 300 children will be born after August 1978, and that all children born will be offspring of parents, both of whom returned to Bikini. The parental dose was obtained as follows:

$$
\begin{aligned}
\text { Average dose to males }<40 \text { years old } & =1.36 \mathrm{rem} \\
\text { Average dose to females }<40 \text { years old } & =1.08 \mathrm{rem} \\
\text { Total parental dose } & =2.44 \mathrm{rem} \\
\text { Parental dose used in calculations } & =1.22 \mathrm{rem}
\end{aligned}
$$

6. The average dose varues for persons who lived on Bikini were calculated from individual dose data (whole body and bone marrow) for 50 males and 49 females. These values are tabulated in the appendix.
7. The spontaneous incidence of birth defects was taken to be 10.7% of all live births from BEIR-III.
8. The normal incidence of cancer deaths was assumed to be 15%. A value less than the approximately 20% given for the U.S. population was used because the Bikini people have been and will probably be exposed to much lower limits of environmental carcinogens than people living in the U.S. and because of limited medical services and prevalence of other risks such as drowning, poisoning, etc. Other causes of death are probably higher in the Bikini population than in the U.S. population. We also suspected the average life span was less than in the U.S. population, which might tend to reduce the number of cancers that would occur in the elderly.
9. The largest dose a person might receive in a year was estimated to be three times the average dose. Data in the appendix for individuals show that the highest individual dose is more than twice the average but less than three times.
 Department of Health Services' Office of Health Planning and the Resources Department. The document is undated, but the presence of data from 1976 indicates that it must have been prepared in the period of 1977 to 1979 when we received it. It was noted that there are apparent inconsistencies among several of the different tables. For example, Table III-1 gives data for the Marshall Islands for the period 1955-1975 and Table III-5 gives data for the infant mortality rate for 1976. In Table III-7, the infant death rate per 1000 births for 1970 through 1975 is given as $28.3,33.6,25.4,46.4,21.1$ and 37.0. However, Table III-5 indicates the infant mortality rate to be only 17.04. We used the data of Table III-1 in the following estimates; because it is more complete and it provides a self-consistent set of data. However, in view of the discrepancies, the results can only be considered as approximations. This probably makes little real difference in view of the uncertainties in the risk coefficients that were used. There is also a bias built into the data because of the inclusion of Ebye and Majuro in the overall Marshall Island rates. This arises from the different death rates (particularly infants) at these two locations. In many respects the population of Ebye and Majuro are quite dissimilar from the Bikini population because they have the advantages and disadvantages of a more technical environment.

For the estimates the last 5 or 6 year average of the data were used because they are probably the most representative of current conditions. From this, the following were obtained:

1. Rate of increase of the population has been about $3.8 \% /$ year.
2. Infant death rate is about 3.2% per birth.
show that the highest individual dose is more than twice the average but less than three times.
summing. This gave 8949 rads for the total population including the original 550 . The total dose received by the original 550 , assuming that all live for the 30 years, is

$$
P^{\prime}=\frac{550}{\lambda}\left(1-e^{-\lambda t}\right)=11,902 \mathrm{rads}
$$

For those born after the return, the population would be the difference between the total population in 30 years, the number of deaths and the original 550 people or 1134 . Thus, the per capita dose for this group is $8949 / 1134=7.9$ rads. For the original 550 , the per capita dose is $11,902 / 550=22$ rads. The ratio of these two to give an estimate of the fraction of the full 30 year dose received by the children is 0.36 .

The assumption of no deaths in the original 550 returning was made for simplicity and the lack of good death rate data.

We also compared the age characteristics of the Marshallese from Table IV-3 and the U.S. population in 1970. This comparison is given in the attached curve. The slopes are similar above age 35 but the magnitudes are distorted by the high birth rate in the Marshall Islands. However, in terms of the relative risk the similar slopes suggest that if the natural cancer rates in the two populations are similar, the relative risk for people above 35 in both populations would be similar because most of the cancer occurs at ages from about 40 and above. However, the magnitude of the relative risk in the U.S. used for the Marshallese will be high by a factor of somewhere around 2-3 because of the distortion caused by the very high proportion of young people who have a relatively low natural cancer incidence.

Using the preceding calculations for a population of 550, calculations were made for other population sizes. For a population of 550 (from preceding):

$$
\begin{aligned}
& \text { Deaths in } 30 \text { years }=164 \approx 160 \\
& \text { Births in } 30 \text { years }=1277 \approx 1300
\end{aligned}
$$

For a population of 140 (the number that returned to Bikini):

A population of 550 was assumed for the one that might move back permanently to Bikini Atoll. Values for other initial populations were obtained by ratios of the results.

The total population at the end of 30 years is given by the compounding equation:

$$
P_{30}=550(1+0.038)^{30}=1684
$$

The number of births in 30 years are given by:

$$
B=0.042 \times 550 \int_{0}^{30}(1.038)^{x} d x
$$

where x is the time between 0 and 30 . This gives

$$
B=\frac{0}{\ln } \frac{042 \times 550}{1.038}\left[1.038^{30}-1\right]=1277
$$

Similarly, the number of deaths in the 30 year period would be:

$$
\begin{aligned}
& \text { Deaths }=0.0054 \times 550 \int_{0}^{30}(1.038)^{x} d x \\
& \text { Deaths }=\frac{0.0054 \times 550}{\ln 1.038}\left[1.038^{30}-1\right]=164
\end{aligned}
$$

One other datum needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initial dose rate of 1 rad/year is given by:

$$
P=550 D_{1} \int^{30} e^{-\lambda x}\left(1.038^{x}\right) d x
$$

λ is the half-1ife of decrease of the radiation dose, taken here as 30 years.

Because this integral cannot be solved analytical, an approximate solution was obtained by calculating this function for each of 30 years and

Deaths in 30 years $\frac{164}{550}=\frac{x}{140}, x=41.7 \approx 40$
Births in 30 years $\frac{1277}{550}=\frac{x}{140}, x=325 . \approx 300$

For a population of 235:
Deaths in 30 years $\frac{164}{550}=\frac{x}{235}, x=70.07 \approx 70$
Births in 30 years $\frac{1277}{550}=\frac{x}{235}, x=545.62 \approx 550$

For a population of 350 :

Deaths in 30 years $\frac{164}{550}=\frac{x}{350}, x=104.36 \approx 100$
Births in 30 years $\frac{1277}{550}=\frac{x}{350}, x=812.63 \approx 800$
III. RISK COEFFICIENTS

At the time the Bikini book was prepared no agency in the U.S. government had accepted the risk coefficients in BEIR-III. Thus we were constrained to use risk coefficients from BEIR-I. While not included in the printed book, risk estimates based on BEIR-III were calculated for comparison purposes. The following gives the origin of the risk coefficients used.
A. BEIR-I

1. Cancer (Tables 3-3 and 3-4)

Derived

Cancer deaths/year in U.S.
from 0.1 rem/year
$($ pop $=197,863,000)$

Cancer deaths/ 10^{6} person rem

	$\frac{\text { Absolute }}{}$Leukemia	$\frac{\text { Relative }}{716}$		$\frac{\text { Absolute }}{26}$	$\frac{\text { Relative }}{37}$
Other Cancers 30 year	1210	2436	61	123	
elevated risk lifetime elevated risk	1485	8340	75	421	

Thus the rate of overall ill health is $1 \% /$ rem at equilibrium or $0.2 \% / \mathrm{rem}$ in first generation.

For estimating the potential genetic derived health defects in the Bikini population it was decided to use a risk coefficient of 0.2% per rem in the first generation recognizing that it was probably very conservative.

1. Cancer (Table V-4 of Typescript Edition) Lifetime Risk of Cancer Death (deaths $/ 10^{6} / \mathrm{rad}$)

Single exposure to 10 rad

Model	Absolute	Relative	Absolute	Relative
$L-Q, \overline{L Q-L}$	77	226	67	182*
$L-L, \overline{L-L}$	167	501	158	430*
Q-L, $\overline{Q-L}$	10	28	---	---

* In printed version these were 169 and 403 , respectively. We used the risk coefficients that were derived for continuous exposure.

2. Birth Defects--pages 166 -169 (mean parental age $=30$ years) 1 rem per generation (1 rem parental exposure) per 10^{6} live offspring 5 to 75 birth defects, this is $0.0005--0.0075 \%--F i r s t$ generation.

Since the spontaneous rate is given as 10.7%, in the U.S. population, 1 rem will increase the rate from 10.7% to $10.7005-10.7075 \%$.

In terms of the spontaneous rate 1 rem per generation gives $\frac{0.0005}{10.7}=$ $0.000047=0.0047 \%$ increase and $\frac{0.0075}{10.7}=0.0007=0.07 \%$ increase .

IV. CALCULATIONS OF RISK

Table 1 gives the radiation dose values provided by Dr . Robison for use in developing estimates of increased health risks in the Bikini population.

A. Risks for 14 Different Living Conditions

1. Cancer Risks

Table 3 shows the calculations for estimates of increased cancer risk for 14 different living conditions.

Table 3 gives the calculations for the estimates of birth defects.

B. Risk Estimates Based on BEIR-III

Table 4 gives risk estimates based on BEIR-III risk coefficients. These were calculated for comparison purposeseonly and were not used in the Bikini book. The highest estimates for cancer risk result from using the linear relative risk model and are about the same as those given in Table 2 for the relative risk model. The lowest estimates result from the linear-quadratic absolute risk model and are slightly less than those for the absolute model in Tabie 2. Thus, as far as estimates of cancer risk are concerned, those obtained using risk coefficients from BEIR-I are in the same general range as those obtained using risk coefficients from BEIR-III.

Risk estimates for birth defects obtained using the risk factor from BEIR-I gives values about three times those obtained using the upper value of the range of risk factors given in BEIR-III. If BEIR-III risk factors for birth defects represent a more enlightened assessment of this potential consequence of radiation exposure than the factor taken from BEIR-I for overall health defects, then the estimates in the Bikini book may be conservative by a factor of three.

Females

Identification Number	Age	Total Whole Body Dose (mrem)
6111	32	250
6097	19	950
6115	43	1600
6109	15	1760
6091	13	600
6046	43 32	1400
6061	70	1600
6030	10	1600
6129	13	850
6027	6	1200
6010	8	2000
6105	5	400
6059	19	390
6124 6058	18	1200
6036	27	340
6110	32	1400
6051	19	1200
6092	8	2400 (highest value)
6080		1400
6038	6	1600
6103	9	1800
6028	6	2200
6062	21	1100
6034	46	1800
865	45	1300
6050	22	2100
6094	35	420
6112	20	1400
6045	28	270
6108	24	730
6063	24	1100
525	37	470
934	43	2100
6106	6	1300
6025 6113	5	880
6060	22	790
6032	32	1400
6123	50	1000
6098	16	720
6065	19	910
6114	32	290
6064	30	1300
6081	13	660
6048	13	44,320 (Total for 41 under age 40) Average $=1080.98$ mrem
Total for all 49 females $=54,710$		
Average $=1116.55$ mrem		

1300	10	50 110		
1200	2100	1400	1100	
1300	1800	700	480	
1600	680	1500	2200	
890	500	1700	1200	
2400	1100	1600	1300	
1300	350	900	900	
1500	2700	1200	820	
1900	1600	2100	1400	
900	210	1500	1100	
2100	2100	410	760	
310	1400	400	1000	
1500	1900	1300	300	
370	1600	340	1400	
1300	1900	1500	620	
2300	1600	1200	670	
1900	3000 (highest value)	2400	56,200 mrem	
1600	72,360 mrem	320		
480	$\mathrm{n}=50$	1400	$n=49$	
1800		1600		
2000		1900		
2500		2300	Average dose t	to all people
2300		1100	72.36 re	rem
1900		1900	56.20 re	
590		1400	128.56	
1500		740		
2600		2200	$\frac{128.56}{99}=$	$=1.2986=\begin{gathered} 1.3 \\ \text { per } \end{gathered}$

B. Whole Body Dose

Males
Identification Number Age Total Whole Body Dose (mrem)

$\begin{array}{r} \text { MOß\RW } \\ \text { aUOG } \end{array}$	кроя
	2LOYM
วso	

$$
\text { Table } 7
$$ESTIMATED RADIATION DOSES TO RESIDENTS OF

ENEU AND/OR BIKINI ISLANDS ASSUMING VARIOUS LIVING PATTERNS*

$$
\begin{gathered}
\text { ESTIMATED RADIATION DOSES TO RESIDENTS OF } \\
\text { ENEU AND/OR BIKINI ISLANDS ASSUMING VARIOUS LIVING PATTERNS* }
\end{gathered}
$$

0080000000000000

$$
\therefore \quad \therefore \pi \quad \because n
$$

$$
\bumpeq \bumpeq \quad \exists \exists
$$

$$
\exists コ
$$

웅 응
으 르 오

品呙
80
꾼

흘웅
Gig

लั̈気烒
 융융
官芦

$$
\dot{\tilde{\sim}} \dot{\tilde{\sim}} \underset{\sim}{\sim}
$$

$$
\begin{aligned}
& 00 \\
& \stackrel{0}{\dot{\sim}} \underset{\sim}{0}
\end{aligned}
$$

$$
\underset{\sim}{\text { §on }}
$$

$$
\begin{gathered}
26.91 \\
0.6
\end{gathered}
$$

$$
\underset{\sim}{\underset{\sim}{\sim}}
$$

들

$$
\underset{\sim}{\cong}
$$

둥气a ～
 욱뭄容弟 악 ®ిః 을 융앙

 울융 을

$$
{ }_{\sim}^{\sim}
$$冎会 ※

※゙ニ

$$
\begin{gathered}
2 \\
\begin{array}{c}
\text { Initial } \\
\text { Population }
\end{array} \\
\hline 550 \\
550 \\
\\
550 \\
550
\end{gathered}
$$喊品

只品 只资

．No imported
Living Conditions
ENEU－100x
1．Imported food
2．No imported food
BIKIMI－100：
3．Imported food
4．No imported food
U
ENEU－ 330 days
5．Imported food
6．No Imported
6．No Imported food
 ENFU－ 330 days ENIU－
BIKINI－ 35 days
1 year on and
\fallingdotseq

 $!$ | 1 |
| :---: |
| Living Conditions | ENEU－100x

1．Imported food
2．No imported food
$\frac{B I K \text { MIM－} 100 \%}{3 . \text { Imported food }}$ 10
ENEII－1 year on
तind 2 years off
I．Imported 12．No imported food CNIU－ $\mathbf{3} 30$ days
BIKINI－ 35 days
1 year years off
13．Imported food
11．No inported food

$$
\begin{aligned}
& \text { * } 87 \times 10^{-6} \text { per person rem } \\
& +458 \times 10^{-6} \text { per person rem }
\end{aligned}
$$

Table 4

*** Based on highest value in Column 8.

