
Enerstike file

410161

C

IMP CONVERSION FACTOR DERIVATION

Unscattered flux at height h given by

$$\phi = \int_{0}^{\infty} \int_{0}^{\infty} \frac{S_{v}}{4\pi r^{2}} \exp \left\{ - \left[\frac{\mu}{\rho} \right]_{a} \frac{\rho_{a} r_{a} + \frac{\mu}{\rho}}{s} s^{c} r_{s} \right] \right\} (1)$$

$$2\pi x \, dx \, dz$$

where

 $S_v = activity per unit volume (\frac{\gamma/sec}{cm^3})$ $r = r_a + r_s$ $\mu/\rho)a, \mu/\rho)s = air and soil mass attenuation coefficients$ $(\frac{cm^2}{g})$ $\rho_a, \rho_s = air and soil density (g/cm^3)$

Assume an exponential source distribution

$$S_v = S_v^o e^{-\alpha Z}$$
 (2)

where

 S_v^o = activity per unit volume at the surface $(\frac{\gamma/sec}{cm^3})$

 α = reciprocal of the relaxation depth (cm⁻¹)

Rewrite Eq.1 in terms of Θ and z, combine with Eq.2 and integrate over z. Leads to

$$\Phi = \frac{S_{v}^{o}}{2} \int_{0}^{\pi/2} \frac{\tan \Theta \exp\left[\frac{-\mu}{\rho / a} \frac{\rho_{a} h \sec \Theta}{\alpha + \mu / \rho}\right] d\Theta \quad (3)$$

Detector response defined in terms of an effective detector area, A, given by

$$A = \frac{N_{p}}{\Phi}$$
(4)

where

 N_{p} = net photopeak count rate

The detector response, in general, varies as a function of the gamma ray angle of incidence and is normally written as

$$A = A_0 R (\Theta)$$
 (5)

where

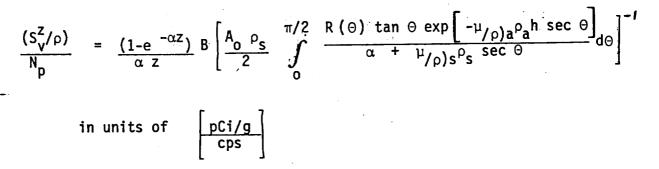
$$\left(\frac{cps}{\gamma/cm^2 sec}\right)$$

$$R^{\circ}(\Theta)$$
 = ratio of detector response at angle
 Θ to that at $\Theta = 0^{\circ}$

Determine A_0 and R (Θ) experimentally for a given detector.

Combining Eq's 4 and 5 with Eq. 3 leads to an expression relating measured photopeak count rate to source activity in the soil.

$$\frac{N_{p}}{S_{v}^{o}} = \left[\frac{A_{o}}{2}\int_{0}^{\pi/2} \int_{0}^{R} \frac{(\Theta) \tan \Theta \exp\left[-\mu_{/\rho}\right] a^{\rho} a^{h} \sec \Theta}{\alpha + \mu_{/\rho} s^{\rho} s^{s} \sec \Theta}\right] d\Theta \left[(6)$$


in units of
$$\frac{cps}{\gamma/cm^3-sec}$$

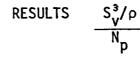
Normally convert γ /sec to μ Ci or pCi for a specific isotope. Can change from activity per unit volume to activity per unit mass by multiplying by the soil density (g/cm³).

For Enewetak want average concentration in top 3 cm. In general, average concentration in top z cm, S_v^z , is given by

$$S_{v}^{Z} = \frac{1}{z} \int_{0}^{z} S_{v}^{0} e^{-\alpha z} dz = \frac{S_{v}^{0}}{\alpha z} (1 - e^{-\alpha z})$$
(7)

Combining Eq's 6 and 7 leads to the final expression for the conversion factor used at Enewetak

where B converts γ /sec to pCi for a specific isotope.

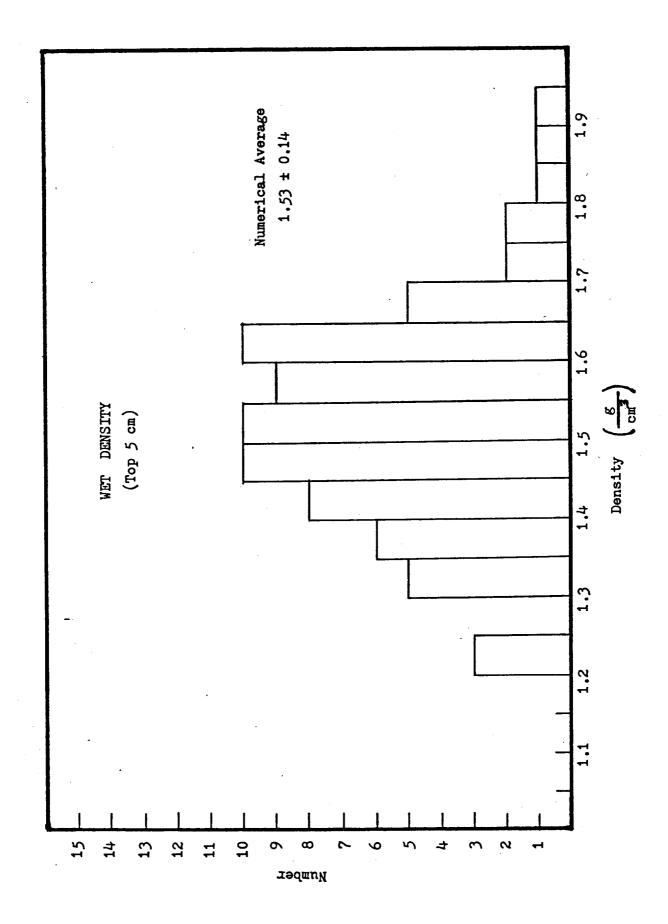

²⁴¹Am INPUT PARAMETERS

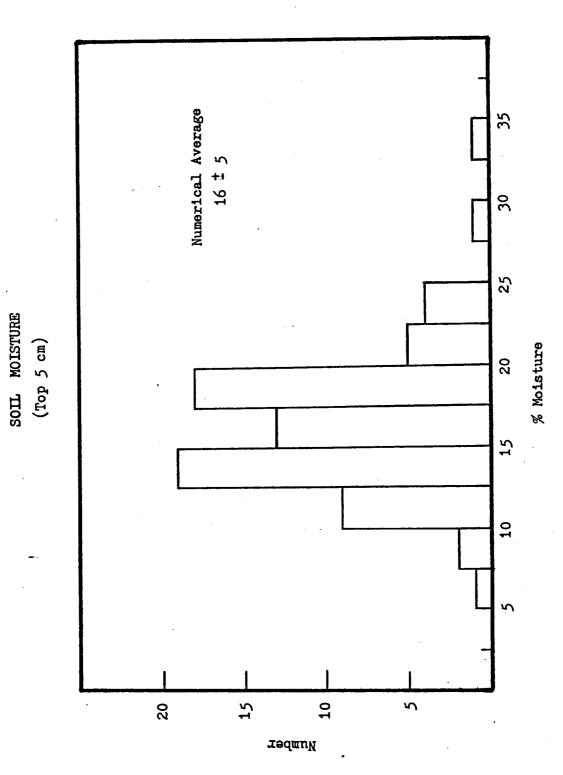
.

h = 7.4m

$$\mu/\rho)a = 0.188 \frac{cm^2}{g}$$

 $\rho_a = 1.15 (10^{-3}) \text{ g/cm}^3 (\text{dry air at 750 mmHg and 86}^{0}\text{F})$
 $z = 3 \text{ cm}$
 $A_0 = 19.0 \frac{cps}{\gamma/cm^2-sec}$
B = 75.3 ($\gamma/\text{dis.} = 35.9\%$, pCi = 3.7 x 10⁻² dis./sec)

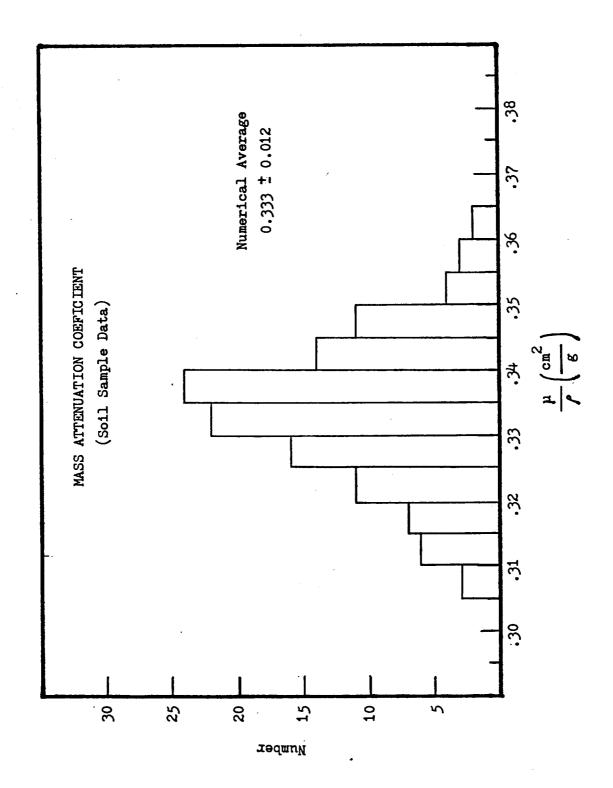

 $R(\Theta)$ = measured with collimator in place



<u>Original</u>

7.71 <u>pCi/g</u> cps <u>Revised</u>

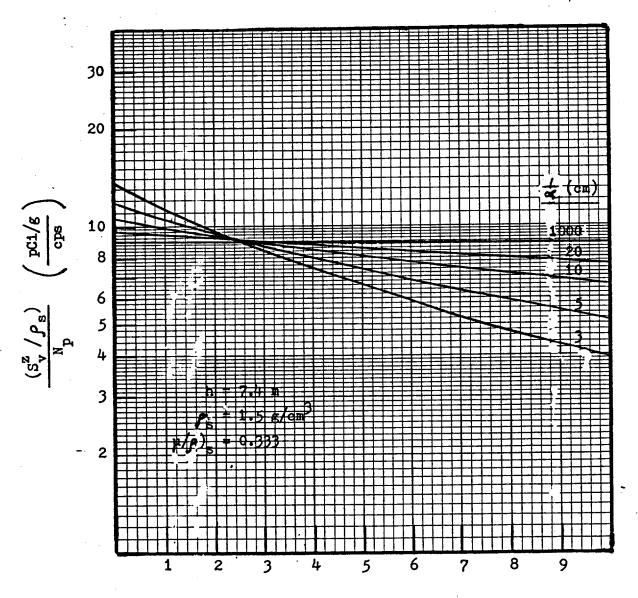
8.95 <u>pCi/g</u> cps


	WET DENSITY		DRY DENSITY		% MOISTURE	
	Sand Cone	Troxler	Sand Cone	Troxler	Sand Cone	Troxler
1.	1.69	1.66	1.46	1.43	15.8	16.1
2.	1.64	1.71	1.43	1.46	14.7	17.1
3.	1.81	1.72	1.46	1.42	24.0	20.7
4.	1.60	1.63	1.37	1.35	16.8	20.7
5.	1.83	1.77	1.67	1.60	9.6	10.6
6.	1.57	1.46	1.22	1.30	28.7	12.3
7.	1.64	1.50	1.43	1.31	14.4	14.4
8.	1.68	1.61	1.41	1.41	19.1	14.2
9.	1.71	1.71	1.49	1.48	14.8	15.5
10.	1.68	1.59	1.43	1.36	17.0	16.9
11.	1.57	1.52	1.34	1.32	16.9	15.2
12.	1.66	1.77	1.47	1.55	12.8	13.8
Enewetak 1	1.86	1.73	1.68	1.56	10.7	10.9

SAND CONE COMPARISON

streak,

:


Troxler	
- Wet 1.03 <u>+</u> 0.05	w/o #6 1.02 ± 0.05
Dry 1.02 ± 0.04	1.02 ± 0.04
% 1.11 <u>+</u> .39	1.00 ± 0.14

MASS ATTENUATION COEFFICIENTS

SAMPLE	SOIL SAMPLE RESULTS	DIRECT MEASUREMENT		
1	0.330	0.337		
2	0.324	0.320		
3	0.331	0.339		
4	0.322	0.328		
5	0.342	0.342		
6	0.340	0.338		
7	0.332	0.335		
8	0.336	0.337		
9	0.327	0.322		
10	0.333	0.333		
11	0.335	0.329		
Average	0.332	0.333		
Las Vegas				
Commercial Dirt		0.273		
Garden Dirt		0.279		
-Desert Soil		0.246		

IMP CONVERSION FACTORS

Soil Depth (cm)

REPOSITORY PNNL
COLLECTION Marshall Jolanda
BOX No. 5686
FOLDER Mine Commences

DOCUMENT DOES NOT CONTAIN ECI Reviewed by <u>Echcuello</u>bate <u>5/1/97</u>

_