Record Number:

Addditional Information: \qquad
\qquad
\qquad

OrMIbox:

a. Procedure for Ground Forecast of Fallout Contamination from laminal Bombs Exploded at NPG from 300 it. Towers. (Note: dir drops do not produce any

(I)

Location and Intensity of liaximum
In order to find location and intensity of maximum fallout area assume that all of the activity of the bomb is located at a point somewhat lover than the center of the mushroom of the atomic cloud. Then follow the trajectory ci a 125 micron particle whose density is $2.56 \mathrm{~mm} / \mathrm{cm}^{3}$. This procedure is recomb:raided since the ND of the soil at NFG is between 100 to 150 microns. This means that the particle is located approximately 7000 ft . from the top of the mushroom s.1d falls with the speed of $15,000 \mathrm{ft}$. per how down to $20,000 \mathrm{ft}$. msl , and at the rate of $12,000 \mathrm{ft} / \mathrm{hr}$ from $20,000 \mathrm{ft}$. down to the ground. This is based on Stoke's Law and the difference in rato of fall is due to change of viscosity of the air with temperatures. Using the above data it is possible to locate the maximum sall-out area on a map. Sec paragraph (8) below for detailed analysis of the :in tho used to obtain the location of the maximum rall-out area. It should be noted that the maximum full-out occurs between two to three hours after il-hour -imco the average cloud rises to approximately 40,000 ft. ms l. The actual time nf full-out depends upon the terrain, the height of the tropopause and the equivacont KT of the bomb. In the cent that the maximum fallout from a nominal bort: does not occur within throe hours, then tho fallout will be generally less conlaminating. If the maximum occurs in $1 \frac{1}{2}$ hours or loss the fallout will be quite fintonso and highly contaminative. To evaluate the maximum fallout using inter grated infinity dose in roentgens, the following empirical relation may be used:
$D=\left(30-\frac{A}{5}=\frac{B}{30}\right) y / 15 \cdots-$ Equation 1 .
$A=i(\omega=$ maximum angular wind shear in the morion from 10,000 it. to $: 0,000 \mathrm{ft}$. ms.
$B=\Delta V=\operatorname{maximum}$ wind speed shoer from 10,000 it. to 40,000 ft. mil.
$Y=$ Equivalent $K T$ of the bomb.
(2) The area covered by the different integrated coss lines mo be cbicined as follows:
(a) The area of the maximum fallout riven above is very smallIt is so small in fact that it may bo taken ns a point. Tho value of this maxima fallout point is given by Equation 1.
(b) Around the maximum fallout point draws an cllifsc whose area varies between 150 to 300 square miles. The major axis of the cllipso will be draw m parallel to the fallout plot of the 125 micron particle cos shown ir paragraph (8) below. That focal point of tho ellipse which is nenrcst to around zero will be placed at the theoretical maximum fallout point. The outer bound r ? of the ellipse will indicate the integrated isodose line obtained by dividing the value of Equation 1 by approximately 4 or 5.
(3) Similarly, on elliptical area of from 500 to 1000 square mile: will be dram about the maximum fallout point. The integrated dose value of th. lino bounding this area is approximately one tenth of the value obtained by us inf Equation 1 .
(1) Starting, with Ground Zero and using the foll -out plot of tin IE_{2} : micron particle indicated in paragraph (8) as a guide, draw n rectangular ar: i' from 3000 to 5000 square milos. Then proceed to fit this rectangular era aras: ground $2 e r o$ and around the maximum fallout point somewhat as indic: ted in artgraph (8) below. The line bounding this area has n value of approximetoly enc

FORECAST F:LL-OUT PLOT

(5) Starting from ground vero and going out 15 to 20 milas on the fall-out plot of the 125 nicron particle, draw en nroa of approximataly 150 to 200 equarc milcs. The linc bounding this aroa has a value of from one firth to ono tonth of the valuo obtainod by Equation 1 . If tho winds aloft are low in. spocd (5 to 20 knots) then this arca will be highly contaminatid. If tho winds aloft are stronger (30 to 80 knots) then this aron will be maller end not ess nighly contamianted.
(6) In the event that the tropopauso is lower than $35,000 \mathrm{ft}$. msl. the fall-out will be somewhat groator then indicatod abovo and the time of fall-- Lit of the maximum contomination vill bo tro hours or less for a 10 to 40 KT Lewer shot. If the tropopause is above $42,000 \mathrm{ft}$. msl, the full-out will be loss than indicated, and the time of fall-out of the maximum contamination will be three nours or moro after H-hour.
(7) Normally the maximum fall-out area will be in a radius of from © to 80 milcs from ground zero, def:nding upon the dircetion and spod of the widds aloft. If the winds ciloft arc rolatively low in speed (10 to 20 knots) tho iill-out in the inficdiate vicinity of ground zero will bc grontor and the "dish"et" and "missilc" fell-out within 10 to 20 miles of ground zero will be much groatcr. Thercforo at l!PG, in the event of a 10 to 30 KT 300 f 't. tower shot, Groom :inc will be most likely to ect contaminated with a 2 to 10 rountgen intcreated infinity wose if tho winds aro from tho South, S.: or Ficst and wook. In the civent that the wind spucd alol't is high (40 to 80 knots) then the meximum fall-out arca will threaton to:ins such as Tonopah, Colicntc, Fioche, Pan:ca, Crystal, Hiko, ilemo, St. Gcorgc, etc. The towns mentioncd above mey roceive from 5 to 30 rocntgon intcerated infinity dose from a 15 to $40 \mathrm{KT}, 300 \mathrm{ft}$. tower shot. The most important fretor in reducing intensity of fill-out is ingulcr wind shcar. If the winds aloft arc moderate to strong and the shone is large (90° to 180°), then the foll-out will be minimal, sine: the conteminntion will bu sprced over a lagecr arcn. Eiy, :iveda 13 aroroxinatoiy 170 nilos from eround zoro, heseo it Fill not cemo undor the fatirim sall-out. It niti recolvo tron Co 5 to 2 rocntron interratod infinity doio. Homorors :iny, loraca mill probably racolve two or three such doses in view of the prevailing vinds at NPG.
(8) The following ex:mulc will be worked out in dctail to illustrato the procodurc outlined above. Wind information obtcincd at $033 \mathrm{FST}, 24$ lit.5ch 195.6 Cloud height cstime:ted at $43,000 \mathrm{ft}$. msl, tropopauso height, $40,000 \mathrm{ft}$. equivalent IT from 30 to 40 KT .

Level	Find Dircction and Spoed	Multiplication Fnctor	Woichted Find Spocd and Dirceticn
cono ft	120\%/05 knots	1/6	120\% 0.8
8uco	$140^{\circ} / 14$	1/6	1.40\%/2.3
10,000	1800\%/16	1/6	$1800^{\circ} / 2.7$
12,000	290\%/14	1/6	$190^{\circ} / 2.3$
1.:000	$200^{\circ} / 14$	1/6	200% \% 3
16,000	$210^{\circ} / 10$	1/6	$210^{\circ} / 1.7$
10,00:	$210^{\circ} / 12$	1/6	$220^{\circ} / 2$
20,000	2200/18	1/4	$220{ }^{\circ} / \therefore$. 7
25,000	$230^{\circ} / 27$	1/3	$2350 / 8$
30,000	230 ${ }^{\circ} / 27$	$1 / 3$	$250^{\circ} / 8.1$
35,000	$240^{\circ} / 26$	1/6	2:0\%\%: 3
40,000	250 $/ 30$		

This placos the maximur foll-out at 42 miles from ground zoro on a bot fing oi 320 . The maximum integrated dosage is, from Equation 1 ,

1 Inoh $=8 \mathrm{mllog}$

FORECAST FALL-OUT PLOT

Hinu of fall-out estimated to occur 2 hours and 10 minutes after H-hour.
'he first arca shown in the illustration around the maximum fall-out point is " "proximately 250 squaro miles and the line inclosing this aroa indiontes 6 roontgen integrated infinity doso. The next aroa is of a pproximatcly 750 square niles, and 3 rocntgens, otc. This examplo represents the prediction that may havo been mado for UFSHOT/KMOTHOLE, Second Shot on 24 March 1953. It is surprising how closoly tho actual fall-out approximatod tho above prodiction. The maximum frill-out at Lincoln Minc (48 milos from ground zoro) occurced at H/f hours and had - value of from 4 to 5 roontgon infinity dosc. Ground rcadings at Synnyside to Adaven (North to North-East of Lincoln Mino) further verificd the forceast plot. Sho telemetoring station approximatoly 15 miles north of ground zoro verificd the ulose in fall-out. This method of analysis must be usod with caution. it should be rememberod that this procodure applies only to 300 ft , tower shats at NTG and when the oloud top reaches 35,000 to $15,000 \mathrm{ft}$. msl (10 to 50 KT bombs). If the tuwer heights are lowered to 200 or 100 ft. , of if the bambs aredetonated on the jurface the contcmination will increcse by sovernl orders of magnitude. If the Equivalent bomb yield is signific:ntly less then 14 KT thon the cloud may only $r \cdot s e$ to 15,000 to $20,000 \mathrm{ft}$. msl. Jnder such an evontuallty the maximum fall-out will occur much closer to ground zero (within a redius of 20 to 40 milus), and the time of fall-out will be more noarly one hour after H-hour.

N. B. LUTiJICN
Major, US:.F Control Officor

