Filini Atoll inhabitants were moved first to Rongerik Atoll and then finally to Kili Island. In 1968 President Johnson declared Bikini Island safe for resettlement.

Rehabilitation efforts of Bikini Atoll began in 1969. These activities required persons to reside on Bikini Island. By April 1978, the population numbered 143 persons and consisted of caretakers and agriculturalists employed by the Trust Territory plus a few Bikini land owners and their families who found their way back via Trust Territory trade ships. This population remained on Bikini Island until they were relocated in August 1978 to Kili Island in the southern Marshalls and to Ejit Island, Majuro Atoll.

During the rehabilitation and repopulation years, the medical services already provided by Robert Conard, M.D. and the Brookhaven Medical Team on other atolls of the Marshall Islands were expanded to include sick call and body burden measurements on Bikini Islands. This team made body burden measurements in 1974 (CO 75) and in 1977 (CO 77). In August 1977, the responsibility for providing body burden measurements was transferred from the Medical Department to the Safety and Environmental Protection Division (SEP) at Brookhaven National Laboratory. The 1978, 1979 and 1980 body burden measurements of the Bikini population were conducted by the SEP organization.

This report summarizes all personnel monitoring activities which were conducted on the Bikini Atoll residents from 1970 through 1980. Using the body burden data along with the reported residence interval, individual dose equivalents have been calculated and are also reviewed.

A. Body Burden Measurements - Radiochemical Analysis of Urine

Prior to the assumption of responsibility for the total personnel

monitoring program by the SEP Division in 1977, analysis of urine samples for

Battelle Pacific Northwest Laboratories (BNWL) and Environmental Measurements
Laboratory (EML). Analytical procedures for processing and analysis are similar
and can be found in OL 81.

Urine data collected after 1977 were processed by the SEP Division. Sample collection and analysis procedures used by this division are outlined below.

1. Urine Collection Protocol

Twenty-four hour and five day urine samples were collected from Bikini Atoll residents. Twenty-four hour samples were used to define fission product body burdens while the five day urine samples were used both to determine fission products and transuranic body burdens. The normal procedure was to distribute the urine collection bottles just after the individual received a whole-body count. Individuals were informed to collect all urine excreta in the bottle for the specified collection period. Sample containers were collected after the selected sample period had elapsed.

Once collected, acidification procedures were followed to inhibit biological degradation of the sample. From 1977 to 1978, urine bottles were pretreated with 15 ml of a 10% thymol-alcohol solution. After urine collection, 10 ml of HNO3 was added. This procedure was halted because of skin discomfort caused by thymol contamination during urine collection. In 1979 and 1980, 15g of boric acid was added to each one liter urine bottle after sample collection. Both acidification techniques minimize sample degradation. After acidification, samples were packaged and shipped to BNL for analysis.

Twenty-four hour urine samples are analyzed for gamma emitting nuclides and $^{90}\mathrm{Sr.}$ Samples are first placed in an ultrasonic cleaner to loosen

drawn for gamma analysis. Gamma spectroscopy is performed with a 125 cc active volume, 26% relative efficiency Ge(Li) detector which is connected to a computer based multi-channel analyzer. Samples were counted from 4000 to 10000 seconds depending on the activity in the sample. When gamma analysis was completed, the aliquot was returned to the initial sample and the total volume was analyzed for $90_{Sr} = 90_{Y}$.

The sample is acidified to a pH of 1, stable strontium and yttrium carrier along with ⁸⁵Sr tracer are added to the sample. The sample is chemically processed according to the procedure reported in Appendix A. The final processing step results in a ⁹⁰Y precipitate which is used to determine the ⁹⁰Sr urine activity concentration. Sample results are corrected for chemical yield and radiological decay of ⁹⁰Y post separation from ⁹⁰Sr. Because of the duration between sample collection and sample analysis (in excess of two months) ⁹⁰Y and ⁹⁰Sr are in secular equilibrium at time of sample analysis.

137_{Cs} and ⁹⁰_{Sr} urine activity concentrations for all pooled samples are reported in Table 1. ¹³⁷_{Cs} and ⁹⁰_{Sr} urine activity concentrations and the ⁹⁰_{Sr} body burden at time of removal are reported in Tables 2 through 5 for Bikini Atoll residents sampled between 1973 and 1980. The ⁹⁰_{Sr} data were used to calculate the bone marrow dose-equivalent commitment.

Five day urine samples were also collected from 1974 to 1978.

These samples were analyzed by Battelle Northwest Laboratory (BNWL), Environmental Monitoring Laboratory (EML) and Los Alamos Scientific Laboratory (LASL) for fission products and transuranic nuclides. The results are presented in Table

6. All transuranic analyses were carried out by alpha spectroscopy. The minimum detectable limit was 3.7 x 10⁻⁵ Bq for all analysis systems.

Five samples were obtained sequentially from 16 persons during the January 1979 field trip to determine the variability inherent in the 24 hour urine sample program. The results of this study are listed in Table 7. For 137Cs, the mean biological and counting variability (one standard deviation) associated with a single urine sample is 32%. For 90Sr, most of the results were less than the minimum detection limits of the system or the average of the 5 urine sample results had an associated standard deviation which was larger than the result. Consequently, only 6 sample results were used to determine the biological and counting variability of the 90Sr urine data. The mean standard deviation associated with this result is 65%. The counting error contributes 15% of the variability while other sources of variation account for 50%. These other sources are most likely related to the day to day metabolic changes normally exhibited by an individual.

B. Whole-Body Counting

Whole-body counting measurements on the Bikini population that were conducted in 1974, 1977, 1978, 1979 and 1980 are presented. The body burden measurements were performed by two different organizations; consequently, the experimental design included a mechanism to ensure that previous and current results are directly comparable. Key detection components were duplicated and the systems were calibrated in the same manner (CO 63). The operational procedures and counting geometries were basically similar, and an intercomparison study was conducted using Marshallese and Brookhaven personnel to ensure system comparability.

1. Instrumentation

The detector chosen for field use by both Brookhaven organizations is a 28 cm diameter, 10 cm thick, sodium iodide thallium activated scintillation

magnetically shielded, photomultiplier tubes. The signal output from each photomultiplier tube is connected in parallel and the combined output routed to a preamplifier/amplifier and then to a microprocessor-based computer/pulse height analyzer (PHA). The PHA data is stored on a magnetic discette, and the results may be analyzed either in the field or at BNL using a matrix reduction, minimization of the sum of squares technique (TS 76).

2. Calibration

Analysis of spectra by the matrix reduction technique requires that the computer library contain individual standards for each radionuclide that is expected in the field measurements and that the field measurements and standards be the same geometry.

To accomplish this, a review of the previous whole body counting data (CO 75, CO 77) indicated the need to calibrate for 40 K, 60 Co and 137 Cs.

The present system was calibrated in 1978 using an Anderson REMCAL phantom (CO 63) and in 1979 using a BOMAB bottle phantom. Each radionuclide was introduced into the phantom's organs in an amount equivalent to the fraction in organ of reference of that in total body as defined by the ICRP in Publication 2 (ICRP 59). Under conditions of continuous exposure where equilibrium has been reached these fractions are correct. This is achieved for the nuclide 40 K. The nuclides 60 Co and 137 Cs are in non-equilibrium throughout the exposure and post exposure intervals. Cesium is taken up principally in cells with 80% to muscle and 8% to bone (SP 68) where the mean residence times are both 160 days. This implies a nearly uniform distribution of the nuclide throughout the whole body. Thus, with 88% of the uptake spread throughout the body with a long halftime and with the remaining 12% of the uptake in the extracellular fluid, which retains

significantly affected with respect to an ingestion/excretion equilibrium of cesium within the body.

Co is not distributed uniformly throughout the body with 20% of an oral intake being retained in the liver with a very long biological halftime and about 80% being cleared from the extracellular fluid to out of the body with a biological halftime of one day or less. Thus source geometry will be significantly effected with respect to ingestion/excretion equilibrium of cobalt within the body.

To verify the activity in the phantom prior to use as a standard, an aliquot of the phantom solution was counted on a lithium drifted germanium detector which was calibrated with NBS standard sources. The phantom was then counted in a shadow shield whole body counter (WBC) (PA65). The whole body counting system consists of a stationary crystal and stationary bed. The counter detects radioactive material located principally in the thorax, so positioning of the phantom and the in vivo counting subjects must be as similar as possible. To facilitate reproducible counting geometries, each subject and the standard phantom was positioned such that the central axis of the crystal intersected the central axis of the body about 25 cm below the sternal notch. The distance between the surface of the bed and the bottom of the detector is 32.4 cm. The total system efficiencies for 40 K, 60 Co and 137 Cs are listed in Table 8 as are typical minimum detection limits for these nuclides.

In 1979, a shadow shield chair geometry replaced the shadow shield bed configuration. The chair whole-body counter used the same electronics as in the past. The system was calibrated using a 3omab bottle phantom. Uniformly distributed activity concentrations of 40 K, 60 Co and 137 Cs were used for system calibration. Verification of phantom activity was accomplished as previously

described. The chair geometry detects radioactive material located between the neck and the knee. The total system efficiencies are the same for the chair and bed geometries.

3. Quality Control

The quality control (QC) program consisted of a cross comparison of the radionuclide amounts estimated to be in the phantom volume versus NBS calibration standards. Agreement between the two activity concentrations is within plus or minus 5% for all radionuclides. Other quality control mechanisms employed were repetitive counting of secondary point source standards, multiple counts of Brookhaven personnel, repetitive counting of the Marshallese (blind duplicates) and an intercomparison study.

Two point sources were used in the QC program. Initially 137 Cs source, which has been used by the BNL medical surveys in previous years, was used to monitor potential changes in system resolution and efficiency as function of time. In subsequent years, a 137 Cs + 60 Co point source, was used for zero, gain, resolution and efficiency determination.

Replicate counting of Marshallese was conducted on 5% of the subjects. Results indicate that the data obtained from the field whole body counting system is reproducible to within plus or minus 6%. Almost all of this error is due to variable subject position. When subjects remain stationary, the difference between sequential results is plus or minus 1%.

An intercomparison of whole body counting systems was conducted between the field system and the whole body counter operated by S. Cohn for the Brookhaven Medical Department. Persons used in the study included 13 Marshallese with measurable 137Cs body burdens plus several Brookhaven employees with current whole body counting records at the Medical Department. The results

of the study indicate that ¹³⁷Cs and ⁴⁰K body burdens which exceed the minimum sensitivity of both systems are in agreement to within plus or minus 5%.

RESULTS

Persons listed in Tables 9 through 12 have been identified as medically registered residents. This terminology means these individuals reported to BNL doctors for sick call during the April 1978 field survey and were assigned a registration number. For continuity, these numbers were retained by SE? for radiochemical analysis of urine identification. Individuals who donated urine for analysis of ⁹⁰Sr and ¹³⁷Cs in 1979 and did not report for sick call during the April 1978 survey at Bikini Atoll have been termed non-medically registered. Persons who had not resided at Bikini Atoll for more than three years as of January 1979 or had never resided at Bikini Atoll are labeled as comparisons.

Tables 9 and 10 present a list of adult individuals who were counted in 1974 (CO 75), 1977 (CO 77), 1978, 1979 and 1980. There is a general increase in body burdens of adult males from 1974 to 1977 by a factor of 13.3, and from 1977 to 1978 by a factor of 1.8. The general increase for adult females from 1977 to 1978 was slightly higher than that for males over the same period. In most cases, the January 1979 data are significantly lower than the 1978 with an averaged reduction in the 137Cs body burden by a factor of 2.9. The May 1979 and August 1980 data follow the expected decreasing trend.

Tables 11 and 12 summarize the ¹³⁷Cs body burden data collected for adolescents and children. It must be noted that data reported here are uncorrected for height and weight differences between subjects and the standard, up to 15% deviations have been reported for adult data (MI 76). Body burdens of adolescents and the standard of adolescents and the standard of adolescents.

cents and children reported in Tables 11, 12 and 13 were computed using efficiencies obtained from standard adolescent and juvenile Bomab phantoms.

Table 13 summarizes the ¹³⁷Cs data that are presently available. It shows the mean standard deviation from the mean, and range of values reported for the sampled population segregated by sex and age, as it has changed from 1974 to 1980.

Table 14 compares the observed reduction in ¹³⁷Cs body burdens from April 1978 to January 1979 with the reduction in ¹³⁷Cs body burden that was expected as a result of relocating the Bikini population in late August 1978. Values for the biological removal rate constants were obtained from NCRP Report 52 (NRCP 77) and ICRP Publication 10A (ICRP 71).

Table 15 presents the long term biological removal rate constants for individuals in the Bikini population as determined from sequential measurements in 1979 and 1980. Table 16 presents population subgroup mean values for the 137Cs long term biological removal rate constant. The data are in good agreement with ICRP publication 10A (ICRP 71) and NCRP report 52 (NCRP 77).

In addition to the followup whole body counts performed on persons who were initially counted in April 1978 on Bikini Atoll, persons who had resided at Bikini Atoll and were concerned about their current body burdens were counted. Dependents of adult Bikini Atoll residents were counted regardless of their residence history. Results of this work conducted in January 1979, May 1979 and August 1980 at Majuro Atoll, Kili Island and Jaluit Atoll are presented for adult males, adult females, adolescents and juveniles in Tables 17 through 20 respectively. Most of the 137 Cs body burdens are at levels which are consistent with world fallout contamination. Some dividuals have higher than anticipated 137 Cs body burdens. Interviews with these subjects revealed that they either

to the food products from contaminated atolls or had recently visited these atolls.

Population Census and Residence Atolls

-

137 Cs body burdens from May 1979 of individuals whose residence history on Bikini was minimal and who had not recently (within 2 years of August 1978) resided at Bikini Atoll were grouped together to form a comparison population. In August 1980, a second comparison population was selected from Majuro Atoll and Kili Island residents who had never resided on Bikini Atoll. The whole-body counting data for this group is presented in Tables 21 through 24. Table 25 summarizes the 137 Cs data for both the May 1979 and August 1980 comparison populations. The comparison population data were used in the computation of the 137 Cs long term biological removal rate constants reported in Table 15.

Table 26 shows the number of April 1978 Bikini residents that were recounted on subsequent field trips. Column 2 lists the total number of people counted on each field trip. Column 3 lists the total number of persons who resided at Bikini Atoll in April 1978. Column 4 lists the number of persons who were medically registered in April 1978. The difference between column 3 and 4 reflects the presence of Rongelap or Utirik residents who had moved to Bikini Atoll between 1970 and 1978. Column 5 lists the number of persons counted that belong to the medically registered population listed in Column 3. Column 6 lists the number of persons counted who reportedly resided on Bikini Atoll at the time of relocation in August 1978. Column 7 lists the number of non-relocated former residents counted.

Table 27 presents the number of adult males, adult females, adolescents and juveniles which composed the medically registered, relocated population sampled in 1978 and 1979. Table 28 presents the same sample breakdown for the

nor medically registered population and medically registered children counted only in 1979.

Table 29 summarizes the residence locations of all persons counted.

Tables 30 and 31 break this data down by sex, age and registry status for the

January 1979 and May 1979 field trips. Tables 32 through 39 provide individual

counting dates and residence atoll or island at time of counting. Table 40

lists registry numbers, age, name, sex and last known location of individuals

who have not been whole body counted since their departure from Bikini Atoll.

DOSIMETRY

The dose equivalent to Bikini Atoll residents during their residency period was the result of internal and external sources of radiation. In 1975, external exposure measurements were performed (GR 79) at Bikini Atoll. Using these data and an estimate of the Marshallese living pattern developed by Gudiksen (GU 76), an estimate of the mean yearly net exposure rate for adult males, adult females, adolescents and juveniles was developed and reported in a previous publication (GR 79). The net external dose equivalent for each individual was determined as the product of the mean net exposure rate, the residency interval and a correction factor for radiological decay and is presented in Column 5 of Table 41.

The dose equivalent commitment for bone marrow due to ⁹⁰Sr has been calculated for individuals from urine data reported in Tables 2 through 5. The symbols, constants and equations used are presented in Appendix B. The retrospective dose equivalent was determined using several assumptions. First, persons returning to Bikini Atoll returned with an initial ⁹⁰Sr body burden at baseline levels. Second, while residing on Bikini Atoll, individuals were subjected to a constant and continuous uptake of ⁹⁰Sr through the ingestion pathway.

Finally, once strontium is ingested and absorbed into the blood, ⁹⁰Sr disintegrations are evenly distributed in cortical and cancelous bone tissues. Each individual was assumed to exhibit different ⁹⁰Sr ingestion rates. The daily activity ingestion rate was determined from urine data. The prospective dose equivalent was determined with the assumption that ingestion of ⁹⁰Sr ceased when the individual departed from Bikini Atoll. Disintegrations resulting from residual strontium-90 in bone post departure were calculated for an infinite post residence interval versus a fifty year period commonly chosen for radiation workers. The dose equivalent commitment, the sum of the retrospective and prospective dose equivalents, are listed in Table 41, Column 3.

The retrospective and prospective dose equivalent resulting from the ingestion of ¹³⁷Cs have been calculated for members of the Bikini Atoll population. The symbols, constants and equations used are presented in Appendix C. Data used for these calculations were obtained from Tables 9 through 12 of this report. Because the ¹³⁷Cs body burden data dramatically increased between 1974 and 1978, constant and continuous uptake of ¹³⁷Cs could not be assumed. Consequently, the dose equivalent during the uptake interval was calculated using a monotonic increasing uptake regime. The total residency period, was divided into three intervals during which constant and continuous ingestion of ¹³⁷Cs was assumed. These periods, January 1, 1970 to December 31, 1975, January 1, 1976 to April 5, 1977 and April 6 to August 31, 1978, were determined based on the bioassay data and the maturation period for vegetation planted in the early 1970's. It was also assumed that the initial ¹³⁷Cs body burdens of individuals returning to Bikini Atoll were at baseline levels. The prospective dose equivalent was determined with the assumption that the ingestion of ¹³⁷Cs ceased after

an individual departed from Bikini Atoll. The dose equivalent commitment as determined from these calculations are listed in Table 41, Column 4.

The total body dose equivalent commitment listed in Column 6, Table 41 is the sum of Columns 4 and 5. The total bone marrow dose equivalent commitment reported in Column 7 was obtained by summing the data in Columns 3, 4 and 5.

Figures 1 through 3 illustrate the distribution of the dosimetric information obtained from Table 41. Figure 1 describes the distribution of residence interval, net external exposure, 90 Sr bone marrow dose equivalent commitment, 137 Cs total body dose equivalent commitment, the total bone marrow and total whole body dose equivalent commitments for the Bikini population sampled in April 1978. Figure 2 presents this information for males only while Figure 3 presents the female dose distribution.

Discussion of Results

⁹⁰Sr body burdens do not appear to be significantly different for males, females and adolescents; however, the ¹³⁷Cs body burden as summarized in Table 13 indicates that male versus female adult body burden means are significantly different. There was also a small difference between the body burdens of the adult females and all children. These differences suggest that dietary and living patterns change as an individual matures thus effecting the body burden.

This problem was addressed for external exposure in an earlier report (GU 77) and an estimated living pattern was developed for children, adult females and adult males. This information indicates that the adult males spend 5% more of their time in an environment which is radiologically substantially higher in activity than do the adult females. If one assumes that 5% more of the dietary uptake of radioactive materials occurs due to the longer duration of time spent in the interior section of the island, then one would expect that the mean adult

main body burden would be higher than the mean adult female body burden by a factor of 1.2. The ¹³⁷Cs data collected in April 1978 indicates that the mean adult male body burden is 1.5 times higher than the mean adult female body burden. Likewise, the mean child body burden for ¹³⁷Cs would be expected to be lower by a factor of 1.8. Our data indicates that the mean child ¹³⁷Cs body burden is a factor 2 less than the mean adult male body burden.

Other factors which influence the body burden include the age of the individual, the residence interval on Bikini Island and family relationships. 137Cs body burden results weighted by the individual's body potassium and ordered by sex, age and residence interval were tested to determine the influence of age and residence interval on the body burden. The Bartlett test for homogeneity of variance was used to determine if the sample populations under consideration had the same variances. If the sample variances were the same then a one way analysis of variances was performed on each data set. If the sample variances were not equal, then the data was transformed by taking the log (In or square root) of the activity and the test for homogeneity repeated. When the data passed the Bartlett test for homogeneity, the one way analysis of variance was performed. The data were grouped by sex because the mean of the adult male and adult female 137Cs body burden were significantly different.

The result of the one way analysis of variance with age of the individual being the variable suspected of influencing the weighted ¹³⁷Cs body burden results indicates that no age or age group significantly influences the results. This implies that indigenous food products are consumed at a uniform rate by all individuals and that one age group does not have a preference for a type of food not found in the diet of other generations.

The result of the one way analysis of variance with residence time on Bikini as the variable of concern is unclear. The statistical analysis for adult males indicates that persons with residency periods greater than 6 years have higher weighted \$^{137}Cs results than the rest of the male population. For adult females, the group residing on Bikini for 3-6 years have lower weighted \$^{137}Cs results than the rest of the adult female population. Residency once past 1 year, was expected to have no effect on the 137 Cs body burden. This expectation was based on the mathematical models used by ICRP Publication 10A (ICRP 71). Which indicate that equilibrium with the environment would be reached within the first 2 years of exposure to a constant uptake of 137 Cs.

Data for these analyses were grouped in age and residency intervals that would provide a minimum sample size of five data points per sample interval.

The small sample size and large variance of the grouped data cast serious doubt as to the significance of the results generated by our statistical analysis.

The last variable considered was the impact of the social structure in the Marshallese society. This factor seems to be highly significant. Table 42 lists the ¹³⁷Cs body burden results ordered by family ranking. The family rank was accomplished by assigning the family placement number to the adult male's ¹³⁷Cs body burden. Examination of this table reveals that the family follows the pattern set by the adult male. This pattern does not follow a direct one to one relationship; however, the trend is apparent.

There are several possible reasons for this trend. First, individuals from the same family have a similar philosophy regarding the quantity of indigenous food crops that they want to consume each day. Second, the family only uses locally grown food products that are obtainable from that family's land. The family wato is also listed in Table 35. Finally, the significance of

processed food on the family diet will be a function of the first two items listed above and the willingness of the family to purchase food.

The whole-body counting data also indicates that previous estimates of the type of food and amount of various components in the Bikini diet did not adequately describe the dietary patterns that existed between 1974 and 1978. As certain local food crops, coconuts, became available in 1976, they were incorporated into the diet in the form of jekaru (the water sap of the coconut tree), jekomai (a syrup concentrate made from jekaru) and waini (drinking coconuts). The maturation time of the coconut tree is 5-7 years. Consequently, one would expect to observe a steady increase in the 137 Cs body burden through 1978 at which time an equilibrium body burden would be reached. Comparison of the observed reduction in the 137 Cs body burden from April 25, 1978 to January 24, 1979 with the expected reduction in the body burdens from September 1, 1978 to January 24, 1979 yields almost identical results for the adult male and adult female groups as shown in Tables 7 and 8. This implies that the Bikini population could have attained equilibrium and that the body burdens on September 1, 1978 were not significantly different than those measured in April 1978. The child data do not agree with the expected value; however, the difference is not beyond the range of half-times listed in NCRP Report 52 (NCRP 77). Although NCRP Report 52 lists a mean half-time for children ages 5 through 15, it does not specify the age distribution of the sample. Most of the Bikini children were in the 5-10 year category; hence, one would expect the observed reduction factor for this group to be somewhat higher than the expected value.

Although the data indicates that the ¹³⁷Cs body burdens may not have increased between April and September 1978, this is not assurance that the body

burdens would not have increased when new dietary items like pandanus and breadfruit became available for daily consumption.

Furthermore, while the population may have been near equilibrium with their April dietary uptake, individuals within the population may not have been. This was apparent in the adult male 137 Cs body burden data where two individuals show no decline in activity between the April 1978 and January 1979 whole body count. In one case, the individual was present on Bikini for only 5 months prior to the April 1978 count. This places the individual at approximately 60% of his equilibrium body burden value. In the second case, there seems to be no clear explanation for the lack of any reduction in the body burden, however

- 1. the individual may have lived away from Bikini prior to the April count; hence, equilibrium was not established at the time of counting, or
 - 2. the individual changed his diet pattern between April and September.

These deviations from the norm do not alter the conclusion that equilibrium or near equilibrium may have been reached for the population as a whole for \$137_{Cs.}\$ Indeed, they illustrate variations about a mean value.

Data collected between January 1979 and August 1980 also indicate that certain individuals have been ingesting ¹³⁷Cs at a rate which exceeds that of the sample population. This could in large part be due to visits to Bikini or other contaminated atolls between measurement dates.

The individual dosimetric data presented here clearly illustrates that at least 19% of the Bikini residents would have received a dose equivalent in excess of 5 mSv (0.5 rem) due to the ingestion of ¹³⁷Cs had the April 1978 activity ingestion rate of ¹³⁷Cs continued. This dose equivalent level does not include the dose equivalent from external radiation or other internally deposited radioactive material. Removal of the Bikini population from Bikini Atoll

eliminated the 137 Cs source term from the diet and limited the dose equivalent received by this population.

The contribution of ⁹⁰Sr to the bone marrow dose equivalent commitment was small relative to the contribution from external exposure and ¹³⁷Cs. As residence intervals increased, and food products with higher ⁹⁰Sr concentrations became more available, then the body burdens and bone marrow dose equivalents would have correspondingly increased.

The total body and bone marrow total dose equivalent commitments have a standard deviation of 40% in the adult subgroups. For residence periods between the years 1969 and 1978, a maximally exposed person received a total dose equivalent commitment of 30 mSv (3 rem) and the population average total dose equivalent commitment was 12 mSv (1.2 rem) due to man-made radioactivity on Bikini Island.

ACKNOWLEDGEMENT

We would like to express our sincere appreciation to Dr. Robert A. Conard and Stanton H. Cohn, Ph.D., Brookhaven National Laboratory, Medical Department for their advice and assistance during the initial setup, preliminary operations and transfer of responsibility for bioassay services to our Division.

The field portion of the radiological survey of the Marshall Islands was accomplished by an intense and diligent effort on the part of the contributors listed for this document. We are also deeply indebted to those contributors who complemented the field work by performing radionuclide analyses and by pretesting equipment prior to use in the field.

The survey crew extends its thanks to the Nevada Operations Office and Pacific Area Support Office for support services which result in a smooth and effi-

cient surveys. Support from the Kwajalein Missile Range and the site contractor, Global Associates, as well as from the crew of the M. V. Carolina Islander, M. V. Marshall Islander and R. V. Liktanur was greatly appreciated.

The outstanding cooperation of personnel from the Trust Territory of the Pacific Islands and from the Office of the District Administrator of the Marshall Islands, as well as that of the Bikini people, played an important part in the successful completion of the survey.

REFERENCES

- CO 63 Cohn, S. H., Conard, R. A., Gusmann, E. A. and Robertson, J. S., 1963,
 "Use of a Portable Whole Body Counter to Measure Internal Contamination in a Fallout-Exposed Population", Health Physics 9, 15.
- CO 75 Conard, Robert, A., et.al., 1975, a Twenty-Year Review of Medical Findings in a Marshallese Population Accidentally Exposed to Radioactive Fallout, BNL 50424 (Brookhaven National Laboratory, Upton, New York).
- CO 77 Personal Communications with S. Cohn, Medical Department Brookhaven National Laboratory.
- GU 76 Gudiksen, P. H., Crites, T. R. and Robison, W. L., 1976, External Dose Estimates for Future Bikini Atoll Inhabitants, UCRL-51879, Rev. 1 (Lawrence Livermore Press, Livermore, California).
- ICRP 59 Recommendations of the International Commission on Radiological Protection (ICRP), Publication 2, 1959, Report of Committee II on Permissible Dose for Internal Radiation, (Pergamon Press, New York).
- ICRP 65 Recommendations of the International Commission on Radiological Protection (ICRP), Publication 9, 1965, Report on Radiation Protection, (Pergamon Press, New York).

- IURP 71 Recommendations of the International Commission on Radiological Protection (ICRP), Publication 10A, 1971, Contamination Resulting from Recurrent or Prolonged Uptakes (Pergamon Press, New York).
- MI 76 Miltenberger R. P., Daniel, H. and Bronson, F. L., Estimate of Total

 Error Associated with a Whole Body Count Result, Handbook of Radiation

 Measurement and Protection, CRC Press, Inc., Cleveland, Ohio (In

 Press).
- NCRP 77 Recommendations of the National Council on Radiation Protection and Measurements (NCRP), Report 52, 1977, Cesium-137 from the Environment to Man: Metabolism and Dose (National Council on Radiation Protection and Measurements, Washington, D. C.).
- OL 31 Protocol for Radiochemical Analysis of Urine, Teeth and Milk, Editor:

 L. L. Olmer, Contributors: D. M. Henze and J. R. Steimers, BNL Report, Draft, March 1981.
- PA 65 Palmer, H. E., and Roesch, W. C., 1965, "A Shadow Shield Whole Body Counter", Health Physics 11, 1213.
- TS 76 TPOS Operations Manual 1976, Tennecomp Systems, Inc., Oak Ridge,
 Tennessee.

Appendix A

Urine Bioassay Chemistry Procedures

Cs and Sr Assay of Urine in the Absence of Fresh Fission Products

A. Reagents

Strontium carrier solution: 20 mg Sr/ml

Yttrium carrier solution: 20 mg Y/ml

Calcium chloride: 0.1 M

Diethylhexylphosphoric acid: 20% in toluene

Nitric Acid: 16N

Hydrochloric: 0.08 N

Ammonium hydroxide: 15 N

Ammonium hydroxide wash solution: 1 ml 15 N in 500 ml H 0

Sodium hydroxide: 6 M

B. Sample Preparation for 137Cs Analysis

- 1. Loosen cap on sample bottle and place into ultrasonic cleaner for approximately 10 minutes to loosen and disperse solids.
- 2. Pour suspended sample into a 2 liter graduated cylinder and record total sample volume.
- 3. Measure 300 ml of sample into an aluminum can. Seal on lid.
- 4. Analyze sample with Ge(Li) detector system. Count for 4000 seconds.
- 5. When gamma analysis is completed and data is verified, return sample to analytical laboratory.
- C. Procedure for 90 Sr Analysis
 - Remove urine from aluminum can and pour into 2 liter beaker.
 Rinse can and cover and add rinses to beaker.

- 2. Pour remaining sample from bottle into the 2 liter beaker, add 50 ml concentration HNO to bottle to rinse walls, add to beaker.
 Rinse with water and add to sample.
- 3. Adjust pH to approximately 1 and heat sample to 80°C. Stir.
- 4. Add to sample

Strontium carrier: 40 mg

Yttrium carrier: 40 mg

90 Sr tracer: 1 ml (X10,000 dpm)

CaCl 0.1 M: 50 ml

- 5. Digest sample at 80°C for 30 minutes while stirring.
- 6. Adjust pH = 4.
- 7. Add 40 ml saturated oxalic acid solution and mix well.
- 8. Drop add 6 M NaOH to adjust pH = 4.
- 9. Digest (with stirring) for 30 minutes.
- 10. Remove from heat, remove stirring bar, let settle overnight.
- 11. Filter entire sample through a 2 inch Whatman 42 filter paper mounted in filter assembly. Wash the precipitate once with ammonia wash solution.
- 12. Transfer filter paper and precipitate to a 150 ml beaker. Dry at 125°C in a muffle furnace. Slowly raise the temperature (over an eight hour period) to a maximum of 500°C. Continue heating at 500°C overnight.
- 13. Cool the sample and add small volumes of concentrated HNO. Evaporate slowly to dryness. Dissolve residue in 60 ml of 0.08 N HCl.

 Adjust pH = 1.

- 14. Transfer sample solution to a 125 ml separatory funnel and extract the yttrium with 60 ml of 20% HDEHP solution. Note time of extraction. Save aqueous phase for possible future reanalysis.
- 15. Wash the organic phase twice with 60 ml of 0.08 N HCl. Save the first wash and combine the aqueous phase from step 14.
- 16. Extract the yttrium from the organic phase with 2, 60 ml volumes of 3 N HNO₃. Shake for 2 minutes for each extraction and then combine 3 N HNO₃ solutions in a 150 ml beaker.
- 17. Evaporate the sample solution to a volume of approximately 3 ml and quantitatively transfer to a 50 ml centrifuge tube with several volumes of water.
- 18. Adjust the pH to 8-10 with NH,OH to precipitate Y(OH),
- 19. Centrifuge, decant and discard supernatant liquid.
- 20. Wash the precipitate with water, centrifuge, discard wash.
- 21. Dissolve the precipitate in 1:1 HCl (a few drops), slurry and add 25 ml water.
- 22. Add saturated oxalic acid (2-3 ml), then 2-3 drops of NH₄OH. Digest at 85°C for 1 hour.
- 23. Filter through a preweighed glass fiber filter disc, wash with water and ethyl alcohol. Dry at 110°C for 15 minutes.
- 24. Weigh the dried precipitate and filter paper. Mount on nylon disc, cover with 0.25 ml mylar and beta count for 60 minutes using low background anti-coincidence counters.
- 25. Correct for gravimetric yttrium yield and yttrium decay single separation.
- 26. Report data in pci/1 urine at time of collection.

Symbols, constants and equations used to calculate 90 Sr-90 Y bone marrow dose equivalent during the uptake interval and the committed dose equivalent

The following definition, symbols, constants and equations describe the mathematical model used to calculate dose equivalent during and post the uptake interval. Intermediate steps can be used to determine body burdens or daily activity ingestion rates. The equations were developed with the assumption that the measured quantity from a bioassay program would be the urine activity concentration. Constant continuous uptake of $^{90}\text{Sr}-^{90}\text{Y}$ through the ingestion pathway was assumed for the entire residence period. For ^{90}Sr , the uptake interval equals the residency period. As indicated previously ^{90}Sr disintegrations are divided equally between cortical and trabecular bone.

Mathematical Model

Symbols, Definitions and Units of Physical Quantities

- $N_{\dot{1}}^{\circ}$ = the number of atoms of species of concern present at time zero in compartment i, atoms,
- N $_{\hat{1}}$ \equiv the instantaneous number of atoms of species of concern present at time t in compartment i, atoms,
- P_i = atom intake rate into compartment i from blood, atoms day -1,
- K_i = the instantaneous fraction of atoms removed from compartment i per unit time by physiological mechanisms, day -1,
- λ = the instantaneous fraction of atoms removed from compartment i per unit time by radiological mechanisms, day⁻¹,
- q_i = the instantaneous activity in compartment i at time t, Becquerels,
- E_i = the instantaneous activity excretion rate from compartment i at time t, Becquerels day⁻¹,

- f. I the fraction of body activity excreted in urine, the
- f, = the fraction of GI tract activity entering blood,
- q = the instantaneous activity in the body, Becquerels,
- P \equiv the atom ingestion rate, atoms day $^{-1}$,
- X_i \equiv the fraction of atoms entering blood deposited in compartment i,
- t = uptake interval, day,
- U = instantaneous urine activity concentration, Becquerels liter,
- U = male urine excretion rate, liters day ,
- $U_f \equiv female urine excretion rate, liters day -1,$
- Q = quality factor,
- D_C = disintegrations due to ⁹⁰Sr remaining in body following uptake interval, Becquerel days,
- D = disintegrations due to 90 Sr in the body during uptake interval,

 Becquerel days,
- H_{M} = the dose equivalent to red marrow during uptake interval, mrem,
- $H_{BN} \equiv$ the dose equivalent to bone during uptake interval, mrem,
- H_{M}^{C} = the dose equivalent to red marrow post uptake, mrem,
- H_{BN}^{C} = the dose equivalent to bone post uptake, mrem,
- S_i \equiv the absorbed dose to red marrow per disintegration of 90 Sr in cortical bone, rads dis⁻¹,
- S_1 = the absorbed dose to red marrow per disintegration of 90 Sr in trabecular bone, rads dis⁻¹,
- S_2 = the absorbed dose to red marrow per disintegration of 90 Y in cortical bone, rads dis $^{-1}$,
- S_3 = the absorbed dose to red marrow per disintegration of ^{90}Y in trabecular bone, rads dis⁻¹,

(:

- $s_4 \equiv \text{the absorbed dose to bone per disintegration of } ^{90}\text{Sr in cortical bone},$ rads dis⁻¹,
- S₅ = the absorbed dose to bone per disintegration ⁹⁰Sr in trabecular bone, rads dis⁻¹,
- $S_6 \equiv \text{the absorbed dose to bone per disintegration of } ^{90}Y \text{ in cortical bone,}$ rads dis $^{-1}$,
- $S_7 \equiv \text{the absorbed dose to bone per disintegration of } ^{90}Y \text{ in trabecular bone,}$ rads dis $^{-1}$.

EQUATIONS

$$\frac{dN_{i}}{dt} = -(\lambda + K_{i}) N_{i} + P_{i}, \qquad (1)$$

$$N_{i} = N_{i}^{o} e^{-(\lambda + K_{i})t} + \frac{P_{i}}{\lambda + K_{i}} (1 - e^{-(\lambda + K_{i})t}),$$
 (2)

$$q_i = \lambda N_i, \tag{3}$$

$$\mathbf{E}_{i} = \mathbf{K}_{i} \mathbf{N}_{i} \lambda, \tag{4}$$

$$\lambda P = \frac{UU_{m}}{f_{1} f_{u}} \left(\frac{K_{1}X_{1}}{\lambda + K_{1}} \left(1 - e^{-(\lambda + K_{1}) t} \right) + \right)$$

$$\frac{K_2X_2}{\lambda + K_2} \left(1 - e^{-(\lambda + K_2)t}\right) +$$

$$\frac{K_3 X_3}{\lambda + K_3} \left(1 - e^{-(\lambda + K_3) t} \right)^{-1}$$
 (5)

$$q = f_1 \lambda P \left(\frac{x_1}{\lambda + K_1} \left(1 - e^{-(\lambda + K_1)t} \right) + \frac{1}{2} \right)$$

$$\frac{x_2}{\lambda + K_2} \left(1 - e^{-(\lambda + K_2)t}\right) +$$

$$\frac{X_3}{\lambda + K_3} \left(1 - e^{-(\lambda + K_3)t}\right), \tag{6}$$

$$D = \frac{f_1^{\lambda} PX_1}{\lambda + K_1} \left(t - \frac{\left(1 - e^{-(\lambda + K_1) t}\right)}{\lambda + K_1} \right) +$$

$$\frac{f_1^{\lambda PX_2}}{\lambda + K_2} \left(t - \frac{\left(1 - e^{-(\lambda + K_2)t}\right)}{\lambda + K_2} \right) +$$

$$\frac{f_1 \lambda PX_3}{\lambda + K_3} \left(\epsilon - \frac{\left(1 - e^{-(\lambda + K_3) \epsilon}\right)}{\lambda + K_3} \right) , \qquad (7)$$

$$D_{C} = \frac{f_{1}^{\lambda} PX_{1}}{(\lambda + K_{1})^{2}} (1 - e^{-(\lambda + K_{1})t}) +$$

$$\frac{f_1^{\lambda PX_2}}{(\lambda + K_2)^2} \left(1 - e^{-(\lambda + K_2)t}\right) +$$

$$\frac{f_1^{\lambda PX_3}}{(\lambda + K_3)^2} \left(1 - e^{-(\lambda + K_3)t}\right) , \qquad (8)$$

$$H_{M} = 4.32 \times 10^{7} DQ(s_{1} + s_{2} + s_{3} + s_{4}),$$
 (9)

$$H_{BN} = 4.32 \times 10^7 DQ(S_5 + S_6 + S_7 + S_8),$$
 (10)

$$H_{M}^{C} = 4.32 \times 10^{7} D_{C}Q (s_{1} + s_{2} + s_{3} + s_{4}),$$
 (11)

$$H_{BN}^{C} = 4.32 \times 10^{7} D_{C}^{Q} (s_{5} + s_{6} + s_{7} + s_{8}),$$
 (12)

Values for Constants

Symbol	Value	Reference							
ĸ ₁	$3.33 \times 10^{-1} d^{-1}$	W. S. Snyder, M. J. Cook and							
		M. R. Ford, Health Physics,							
		10, 171 (1964).							
к ₂	$2.27 \times 10^{-2} d^{-1}$	п							
к ₃	$2.5 \times 10^{-4} d^{-1}$	п							
x ₁	0.73	π							
x ₂	0.10	11							
x ₃	0.17	п							
λ	$6.54 \times 10^{-5} d^{-1}$	12th Edition, Chart of the							
		Nuclides (1977).							
f	0.85	ICRP 10 (1967).							
f ₁	0.20	ICRP 73/C2-34; ICRP 20 (1972).							
U ma	1.4 ℓ d ⁻¹	ICRP Reference Man							
Uf	1.0 % d ⁻¹	ICRP Reference Man							
Q	1.0	NCRP							

Values for Constants (Cont'd)

Symbol	Value	Reference					
s	$9.8 \times 10^{-15} \text{ rads dis}^{-1}$	MIRD 11					
s ₂	$7.3 \times 10^{-13} \text{ rads dis}^{-1}$	MIRD 11					
s ₃	$2.5 \times 10^{-13} \text{ rads dis}^{-1}$	MIRD 11					
s ₄	$4.3 \times 10^{-12} \text{ rads dis}^{-1}$	MIRD 11					
s ₅	$6.3 \times 10^{-13} \text{ rads dis}^{-1}$	MIRD 11					
s ₆	$4.1 \times 10^{-13} \text{ rads dis}^{-1}$	MIRD 11					
s ₇	$3.0 \times 10^{-12} \text{ rads dis}^{-1}$	MIRD 11					
s ₈	$1.7 \times 10^{-12} \text{ rads dis}^{-1}$	MIRD 11					

Appandix C

Symbols, constants and equations used to calculate the 137Cs - 137m Ba total body dose equivalent during the uptake interval and the committed dose equivalent

The following definitions, symbols, constants and equations describe the mathematical model used to calculate the dose equivalent and the committed dose equivalent. Intermediate steps can be used to determine urine activity concentrations or daily ingestion rates. The equations were developed with the assumption that the body burden as determined from whole body counting, would be the measured quantity from the bioassay program. Three intervals of monotonically increasing, but constant and continuous uptake throughout an interval were assumed. Consequently, the equations must be repeated 3 times in order to obtain the total dose equivalent during the uptake interval. For 137 Cs, the uptake interval corresponds to the number of days out of the residence period that an individual maintained the proposed daily activity ingestion rate.

Mathematical Model

Symbols, Definitions and Units of Physical Quantities

- N_i^0 = the number of atoms of species of concern present at time zero in compartment i, atoms,
- N_{i} \equiv the instantaneous number of atoms of species of concern present at time t in compartment i, atoms,
- P_i = atom intake rate into compartment i from blood, atoms day -1,
- K_i ≡ the instantaneous fraction of atoms removed from compartment i per unit time by physiological mechanisms, day⁻¹,

- λ = the instantaneous fraction of atoms removed from compartment i per unit time by radiological mechanisms, day⁻¹,
- q; = the instantaneous activity in compartment i at time t, Becquerels,
- E.

 The instantaneous activity excretion rate from compartment i at time t,

 Becquerels day 1,
- f = the fraction of body activity excreted in urine,
- f, = the fraction of GI tract activity entering blood,
- q = the instantaneous activity in the body, Becquerels,
- q° = the initial activity in the body, Becquerels,
- P \equiv the atom ingestion rate, atoms day $^{-1}$,
- X_i = the fraction of atoms entering blood deposited in compartment i,
- t = uptake interval, day,
- Q ≡ quality factor,
- D_C = committed disintegrations due to ¹³⁷Cs remaining in body following uptake interval, Becquerel days,
- M = mass of individual, kg,
- D = disintegrations due to 137Cs in the body during uptake interval,

 Becquerel days,
- $H_{RB}^{}$ \equiv the dose equivalent to the total body during the uptake interval, mRem,
- $H_{
 m PB}$ = the dose equivalent to the total body post uptake interval, mRem,
- X' = the fraction of radioactive atoms in the total body remaining in compartment i at the end of the uptake interval,
- S \equiv the absorbed dose to the total body per disintegration of 137 Cs- 137m Ba in the total body, rads dis $^{-1}$,

EQUATIONS

$$\frac{dNi}{dt} = (\lambda + K_i)N_i + P_i, \qquad (1)$$

$$N_{i} = N_{i}^{o} e^{-(\lambda + K_{i})t} + \frac{P_{i}}{\lambda + K_{i}} (1 - e^{-(\lambda + K_{i})t}),$$
 (2)

$$q_{i} = \lambda N_{i}, \tag{3}$$

$$E_{i} = K_{i}N_{i}\lambda_{i} \tag{4}$$

$$X_{i}^{!} = \frac{\frac{X_{i}}{(K_{i}+\lambda)} \left(1-e^{-(K_{i}+\lambda)t}\right)}{\sum_{i} \frac{X_{i}}{(K_{i}+\lambda)} \left(1-e^{-(K_{i}+\lambda)t}\right)}$$
(5)

$$q = \lambda P(\frac{X_1f_1}{(K_1+\lambda)} (1-e^{-(K_1+\lambda)t}) +$$

$$\frac{X_2f_1}{(X_2+\lambda)}\left(1-e^{-(K_3+\lambda)t}\right)\right) +$$

$$(x_{1}^{i} e^{-(K_{1}+\lambda)t} + x_{2}^{i} e^{-(K_{2}+\lambda)t})$$
(6)

$$D = \frac{\lambda P X_1 f_1}{K_1 + \lambda} \left(t - \frac{(\lambda e^{-(\lambda + K_1) t})}{K_1 + \lambda} \right) +$$

$$\frac{\lambda PX_2f_1}{K_2+\lambda} \left(t - \frac{\left(1-e^{-(\lambda+K_2)t}\right)}{K_2+\lambda}\right) \tag{7}$$

$$D_{C} = \frac{x_{i}^{'}q^{\circ}}{K_{1}+\lambda} (1-e^{-(\lambda+K_{1})t}) +$$

$$\frac{X_{2}^{'}q^{\circ}}{K_{2}^{+}\lambda} \left(1 - e^{-(\lambda + K_{2})}\right) , \qquad (8)$$

$$H_{RB} = 8.64 \times 10^7 \text{ DQS}$$
, (9)

$$H_{PB} = 8.64 \times 10^7 D_{C}QS$$
 (10)

Values for Constants

Symbol	Value	Reference						
ĸ ₁	$0.7 d^{-1}$	ICRP						
к ₂	0.006 d ⁻¹	ICRP 10						
\mathbf{x}_{1}	0.15	ICRP 10						
x ₂	0.85	ICRP 10						
x;	0.002	Uptake interval >> 140 days						
X' ₂	0.998	Uptake interval >> 140 days						
λ	$6.33 \times 10^{-5} d^{-1}$	Nuclear data tables						
f ₁	1.0	ICRP 10						
Q	1.0	ICRP 26						
S	$1.05 \times 10^{-13} \text{ rads dis}^{-1}$	MIRD 11						

Table 1 Pooled or Mean Urine Activity Concentration for $^{90}\mathrm{Sr}$ and $^{137}\mathrm{Cs}$

Year of Collection	90 Sr Urine Conc pCi/2	137 Urine Conc nCi/1	Comment
1970	1.2	0.10	3640 ml - pooled
1970	1.3	0.13	3365 ml - pooled
1970	2.2	-	1100 ml - pooled
1970	1.9	-	930 ml - pooled
1971	0.96	0.22	3920 ml - pooled
1971	0.89	0.20	2960 ml - pooled
1971	1.2	0.21	3300 ml - pooled
1971	3.9	0.11	500 ml - pooled
1972	4.2	0.91	2700 ml - pooled
1973	6.7	1.3	mean of 14 people
1974	2.3	1.3	mean of 21 people
1975	7.3	1.8	pooled
1975	3.1	1.3	pooled
1976	5.3	2.2	mean of 26 people
1977	3.9	7.7	mean of 4 people
1978	6.1	14.	mean of 35 people
1979	2.6	1.3	January, mean of 50 people
1979	2.8	.87	May, mean of 40 people
1980	NA	NA	August

NA = Not Analyzed

PRIVACY ACT MATERIAL REMOVED

Table 2

Unine Activity Concentrations for Former Adult Hale Bikini laland Residents

1970 - 1980

	1973		1974		1976		1977		19/8		1979 - Jan.		1979 - Hay		1980 - Aug.	
	⁹⁰ Si Ur i ne Conc .	137 Urine Conc.	90 Orine Conc.	137 _{Cs} Urine Conc.	90 Sr th ine Conc .	137 Orine Conc.	90 Sr Urine Conc.	137 Urine Conc.	90 Sr Ur i ne Conc .	137 Orine Conc.	90 Sr Ut ine Conc .	137 Urine Conc.	90 Sr Urine Conc.	137 Ur inc Conc.	90 St Drine Cone.	137 Orrne Conc.
	PCi/t	<u>aCı/₹</u>	PG1/L	nCi/t	$L_{C1}/\bar{\epsilon}$	nCi/L	PCi/L	nCi/L	FCI/F	nC1/L	PCi/E	nCi/L	PCI/L	nCi/t	FGi\T	$\widetilde{r}_{C^{(1)}\setminus \vec{k}}$
(A)	8.9	2.1	₹0.4	0.40												
(A)	5.7	1.1														
(A)	5.5	2.6														
(A)	2.0	0.40														
(A)	1.9	0.40														
(A)	7.8	2.0	-	-												
(A)			2.4	0.80												•
(A)					2.7 ₁ 0.2	3.9 ₁ 0.2	NA	0.58								
863				•					8./t 2.6	20. ± 0.45						
6070			1.2	1.0	10. 1	3.0 ± 0.2			11 1	16 1 0.41	2.8 ± 0.70	6.3 t 0.14				
6119*									NA	16 1						•

Table 2 (Cont'd)

	19	73	19	74	19	16	19	11	19	78	1979 -	Jan.	1979 -	- Нау	1980	Aug.
ID #	90 _{Sr} Urine Conc. pGi/L	137 _{Co} Urine Conc. nCi/1	90 Sr Urine Conc. pCi/1	Urine Conc. nCi/L	90 Urina Conc. pCi/L	137 _{Cs} Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	Urine Conc. nCi/L	90 Sr Urine Conc. pGi/L	137 Ca Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	Urine Conc. nCi/1	90 Sr Urine Conc. pCi/L	137 _{Cu} Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	137 Cs Urine Conc. nCi/L
6033									12 t 1.2	NA						
6018			3.0	0.60	7.11 0.6	2.8 t 0.2			7.6 ± 0.91	NA						
6069*									NA	16 ± 0.44			1.2 ± 1.2	1.2 ±		
6068					2.3± 0.2	0.29± 0.06			2.9 ± 1.6	9.1 ± 0.31						
6067					5.61 0.6	1.9 ± 0.2			2.3 ± 0.73	NA	0.54± 0.25	5.2 ± 0.10	0.51± 0.95	2.0 ± 0.09		
6067					2.8± 0.4	1.0 ± 0.2										
6017	6.2	0.90							12 ± 2.7	37 ± 0.61			4.6 ± 2.0	1.4 ± 0.13		
6019					1.6± 0.2	1.1 ± 0.2			10 ±	NA	3.1 ± 1.2	2.7 ± 0.17				
6001					4.81 0.8	2.9 t 0.2										
					12 ±	6.9 t 0.4					0.56± 0.01	4.1 ±				

Table 2 (Cont'd)

	19	73	19	74	19	76	19	17	19	78	1979 -	Jan.	1979 -	- May	1980	- <u> </u>
	⁹⁰ Sr Urine	137 Orine	90 Sr Vrine	137 _C . Urine	90 Sr Urine	137 _{Ca} Urine	90 Sr Urine	137 Urine	90 Sr Urine	137 _{Ca} Urine	90 Sr Urine	137 _{Ca} Ur ine	90 Sr Urine	137 Urine	90 Sr Ur i ne	137 Urine
1D #	Conc. pCi/L	Conc. nCi/L	Conc. pCi/1	Conc. nCi/L	Conc. pCi/L	Conc.	Conc. pCi/L	Conc. nCi/L	Conc. pCi/t	Conc. uCi/L	Conc. pCi/L	Conc. nCi/L	Conc. pCi/t	Conc. nCi/L	Conc. pCi/t	Conc.
6073			<u><</u> 0.2	1.5												
6005									2.0 1 1.3	6.9 t 0.26	•		-1.2 ± 16	1.3 ± 0.045		
6008					5.5± 1.4	1.7 ± 0.2					1.3 ± 0.62	6.1 ± 0.25				
6086	5.4	0.50	4.6	1.2	5.5± 0.4	0.9 1 0.2			9.4 ± 1.6	16 ± 0.40	0.71± 0.52	2.9 ± 0.17	5.9 ± 1.3	2.1 ± 0.095		
6071*									NA	16 ± 0.44	0.55± 1.0	4.5 ± 0.21				
6076					1.2± 0.2	1.2 1			0.931	18 ± 0.43	0.37± 0.80	6.2 ± 0.25				
6072*			2.5	0.50					NA	16 ± 0.44						
813							NA	7.8			2.5 ± 1.0	2.9 ± 0.11				
6118									1.8 ± 0.70	NA	1.4 ± 0.59	3.5 ± 0.085	0.671	0.46 ± 0.076		
6126					4.11 0.4	3.2 ± 0.2			6.1 ± 2.6	0.15	-					

Table 2 (Cont'd)

	19	73	19	14	197	16	197	22	197	78	1979	Jan.	1979	- May	1980	VoR.
	90 Sr Urine	137 Orine	90 Sr Urine	137 Orine	90 Sr Ui i ne	137 Urine	90 Sr Urine	137 _{Cm} Urine	⁹⁰ Sr Urine	137 _{C#} Urine	⁹⁰ Sr Urine	137 _{Cs} Urine	90 Sr Urine	137 Os Ocine	⁹⁰ Sr Urine	137 _{Cs} Urine
1D #	Conc. pCi/L	Conc. nCi/L	Conc. pCi/t	Conc. nCi/L	Conc. pCi/L	Conc. nCi/L	Conc. pCi/L	Conc. nCi/L	Conc. pCi/L	Conc. nCi/L	Conc. pCi/L	Conc. nCi/t	Conc. pCi/t	Conc. nCi/t	Conc. pCi/L	Conc. nCi/t
6003									9.8 ± 1.9	17 ± 0.41						
6117					4.3± 0.4	1.9 ± 0.2	<0.62	NA	8.4 ± 1.0	NA	1.4 ± 0.57	4.3 ± 0.21	1.2 ±	2.3 ± 0.16		
6128					3.3t 0.4	2.7 ± 0.2	4.2 i 2.0	NA	23.0 t 6.0	5.1, ± 0.23	0.37± 0.41	1.5 ± 0.13				
6125							4.1 ± 1.5	8.3	1.2 ± 0.64	NA			-0.4 ±	1.7 ± 0.059		
6007									4.8 ± 1.1	10 ± 0.32	1.2 ± 0.69	1.4 ± 0.12				
											0.04 t 0.68	8.0 t 0.29				·
6066											1.5 ± 11	1.3 ± 0.16				
864					13 ±	5.1 t 0.2	NA	12								
966					6.8± 0.6	-	6.6 ± 1.8	16								
6135									2.4 t 0.88	NA						

Table 2 (Cont'd)

	19	73	19	74	19	16	19	17	19	78	1979 -	Jan.	1979	Hay	1980	- Aug.
1D #	90 Sr Urine Conc. pCi/1	Urine Conc. nCi/L	90 Brine Conc. pCi/L	137 Ce Urine Conc. nCi/L	90 Sr Urine Conc. pCi/t	137 _{Co} Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	137 Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	137 _{Cs} Urine Conc. nCi/L	90 Sr Urine Conc. pCi/1	13/Ca Urine Conc. nCi/t	90 Urine Conc. PCi/L	137 _{Cs} Urine Conc. nCi/1
6096									4.3 ± 1.6	6.1 ± 0.25	0 ± 0.72	4.0 ± 0.20	1.1 1	2.1 1		
6002					1.1± 0.2	0.9 t 0.2			1.1 1	NA						
6161	2.2	0.60									0.86 t 0.40	0.33 ± 0.030	•			
6166											0.29± 0.52	ND	0.391	HD		
6184											0.22t 0.53	0.10 ± 0.049	2.8 ± 3.0	0.099± 0.037		
6210			3.2	1.7	2.0t 0.2	3.0 t 0.2							0 ± 1.95	1.4 ± 0.12		
6190																
6205													0.4 ± 1.6	ND .		
6211													1.5 ± 5.3	ND		
6218													0.9 ± 2.5	ND		
6219													3.8 ± 5.4	ND		

Table 2 (Cont'd)

	19	13	19		19	76	19	11	19	18	1979	Jan.	1979	- May	1980	Aug.
	⁹⁰ Sr Urine Conc.	137 Urine Conc.	90 Orine Conc.	137 Urine Conc.	⁹⁰ Sr Urine Conc.	137 Urine Conc.	⁹⁰ Sr Urine Conc.	137 Urine Conc.	90 Urine Conc.	137 Urine Conc.	⁹⁰ Sr Urine Conc.	137 Urine Conc.	⁹⁰ Sr Urine Conc.	137 Urine Conc.	90 Orine Conc.	137 Urine Cond.
1D #	pCi/L	nCi/L	pCi/t	nCi/L	pCi/L	nCi/L	pCi/L	nCi/L	PCi/L	nCi/L	pCi/L	uCi/L	PCi/L	nCi/L	pci/t	nci/L
6220													0.25± 1.3	NÚ		
6221													06 1.0	ND		
6136											2.9 ± 1.6	0.079 0.043				
6138											0.25± 0.47	2.6 ± 0.66				
6153							•				0 ±	0.11 ± 0.043	-0.06 t 1.6	ND		
6168													3.7 ± 5.6	34D		
6180											1.3 ± 0.53	0.16 ± 0.047				
6182											0.36± 0.39	3.2 ± 0.19				
80													12 ±	ND		
lsaw							NA	1.3								
Steve							NA	7.8								

Table 2 (Cont'd)

	19	73	19	74	19	76	19	<u> </u>	19	78	1979	- Jan.	1979	- May	1980	Aug.
	⁹⁰ sr	137 _{C4}	⁹⁰ sr	137 _{Ca}	90 Sr	137 _{Cs}	90 Sr	137 _{Ce}	90 St	137 _{Ca}	90 Sr	137 _{Ce}	90 Sr	137 _C	90 Sr	137 _{Ca}
	Urine	Urine	Urine Conc.	Ur i ne Conc .	Urine Conc.	Urine Conc.	Urine Conc.	Urine Conc.	Urine Conc.	Urine	Urine	Ut ine	Urine	Utine Conc.	Ur i ne Conc .	Urrae Conc.
ID #	Conc. pCi/L	Conc. nCi/L	PCi/L	nCi/L	PCi/L	nCi/t	PCi/L	nCi/L	PCi/L	Conc. nCi/k	Conc. pCi/t	Conc. nCi/t	Conc. PCi/t	nci/L	PCi/L	nti/L
6004*									NA	16 ± 0.44	•					
Sample Size	9	9	8	8	19	18	4	7	21	17	24	22	22	12		
Hean	5.1	1.2	2.2	0.96	5.0	2.5	3.9	1.7	6.7	15	1.0	3.3	1.9	1.4		
Stnd Dev	2.5	0.84	1.5	0.47	3.5	1.7	2.5	5.5	5.4	7.3	0.95	2.2	2.9	0.74		
Low	1.9	0.4	0.2	0.5	1.1	0.29	. 62	0.58	0.93	5.1	0	0.10	-1.2	0.099		
il i gh	8.9	2.6	4.6	1.7	13	5.1	6.6	16	23	37	3.1	6.3	12	2.3		

Table 3
Urine Activity Concentrations for Former Adult Female Bikini taland Residents

1973 - 1980

	19	73	19	74	19	76	19	978	1979 -	Jan.	1979 -	Hay	1980	Aug.
	90 Sr Urine Conc.	137 Urine Conc.	⁹⁰ Sr Urine Conc.	137 Urine Conc.	90 Urine Conc.	137 Urine Conc.	90 Or i ne Conc .	137 Ca Urine Conc.	Urine Conc.	137 Cs Urine Conc.	90 Sr Urine Conc.	137 _{Ce} Urine Conc.	90 Sr Urine Conc.	137 Urine Conc.
10 #	PCi/L	nCi/L	pCi/L	mCi/L	PCi/L	nCi/t	PCi/L	nCi/L	PCi/L	nCi/L	PCi/L	nCi/t	PCi/L	nCi/L
	11.6	2.1	3.8	3.2	-	-								
	4.8	1.2	-	-	-	-								
	-	-	<u>≤</u> 0.1	1.0	-	-								
	-	-	-	-	2.3 ± 0.4	1.4 ± 0.2								
	-	-	-	-	9.6 ± 7.0	1.4 t 0.2								
6045							3.6± 1.9	17 ± 0.42						
6112							3.9± 2.0	18 ± 0.42	0.082t 0.89	6.5 ± 0.13	2.5 ±	1.3 ± 0.076		
6114							6.0± 2.7	NA	1.1 0.69	0.77 0.095				
6111							3.9± 3.4	19 t 0.50	0.39 ±	4.9 1 0.23			•	

Table 3 (Cont'd)

	19	73	19	74	19	76	1	978	1979 -	Jan.	1979 -	- Hay	1980	Aug.
ID #	90 Urine Conc. pCi/t	Urine Conc. nCi/L	90 Urine Conc. pCi/t	Urine Conc. nCi/L	90 Urine Conc. pCi/L	137 Cs Urine Conc. nCi/L	90 Sr Urine Conc. pCi/t	137 Ca Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	137 _{Cu} Urine Conc. nCi/L	90 Urine Conc. pCi/L	Urine Conc. nCi/L	90 Sr Urine Conc. pCi/L	137 Urine Conc. nCi/L
6122							3.8± 2.4	8.9t 0.40	0 ±	1.3 ± 0.12	1.8 1	0.66 ± 0.089		
6123									3.8 ± 2.3	5.0 ± 0.23				
6059							4.8± 2.2	7.6t 0.29						
6063					1.5 ± 0.4	1.6 ± 0.2								
6032*							2.0t	16 1 0.44	0 1 0.51	2.8 t 0.17	7.5 ± 3.4	0.61 ± 0.069		
6185											0.26± 0.99	0.046t 0.035		
6108					7.6 ± 1.8	0.9 t 0.2	4.5± 2.9	7.0t 0.27	2.3 ± 0.89	4.8 ± 0.23				
6206											-0.061 1.2	ND .		
6113							2.0± 1.2	6.7t 0.26	4.5 t 5.4	2.6 ± 0.18	0.8 1	0.57 ± 0.083		
6065							13 t 2.0	3.6± 0.19	2.4 ± 2.4	2.8 ± 0.23				

Table 3 (Cont'd)

	19		19	74	19		19	78	1979	Jan.	1979	Hay	1980	Aug.
ID #	90 Sr Urine Couc. pCi/L	Urine Conc. nCi/k	90 Sr Urine Conc. PCi/L	137 _{Ca} Urine Conc. nCi/t	90 Sr Urine Conc. pCi/L	Urine Conc. nCi/t	90 Sr Urine Conc. pCi/L	Urine Conc. nCi/L	90 Sr Urine Conc. pCi/k	Urine Conc. nCi/L	90 Sr Urine Conc. pCi/k	Urine Conc. nCi/t	Sr Urine Conc. pCi/L	Urine Conc. nCi/R
6097*							NA	16 ± 0.44	0.38 1 0.98	0.33 0.064	0.81± 1.1	0.83 ± 0.097		
6109*							NA	16 ± 0.44			1.9 ± 1.3	0.11 [‡] 0.043		
6046							5.6± 1.2	13 ± 0.37			1.9 ± 1.3	0.11± 0.043		
6098									0.71 1	0.69 t 0.20				
6060									1.2 ± 0.82	1.7 ± 0.20	1.9 ± 1.4	0.59 ± 0.085		
6222											0.58± 1.3	ИП		
6110											4.4 ± 1.8	0.61 ± 0.088		
525							2.2± 0.82	NA			3.7 ± 1.6	0.17 ± 0.059		
6064 *							NA	16 ± 0.44	0.91 ± 0.45	2.0 ± 0.066	2.7 ± 0.91	1.8 ± 0.088		
6061							4.6± 0.91	14 ± 0.38						

Table 3 (Cont'd)

	19	73	19	74	19	76	19	978	1979 -	Jan.	1979 -	Нау	1980	Aug.
1D #	90 Brine Conc. pCi/1	137 Cm Urine Conc. nCi/L	90 Sr Urine Conc. pCi/t	137 _{Ca} Urine Conc. uCi/L	90 Sr Urine Conc. pCi/t	137 Ca Urine Conc. nCi/L	90 Sr Urine Conc. pCi/t	137 Utine Conc. nCi/t	90 Sr Urine Conc. pCi/1	137 Urine Conc. nCi/t	90 Brine Conc. pCi/L	137 Urine Conc. nCi/t	90 Sr Urine Conc. pCi/L	137 Urine Conc. nCi/f
6051	Polita	1017 1	Poi/ 2		Politi	1017	Port r	1017.5	P. I.	10172	0.99± 0.84	0.201 0.034	Port	10-7-2
934					5.4 ± 0.4	NA	8.2± 1.4	NA			2.6 ± 1.5	2.1 ± 0.16		
6062											10 ± 4.1	1.5 ± 0.13		
6035							9,9± 2.0	0.37	2.9	2.7 ± 0.13		,		
6115					5.1 ± 0.8	3.2 1	6.0t 2.3	10 t 0.33	0.61 ±	4.2 ± 0.21				
6034*							NA	16 ± 0.44			1.7 ±	0.57 ± 0.082		
865					4.0 ± 0.4	0.2		14 A			1.4 ±	0.71 ± 0.059		
6036*							NA	16 ± 0.44	0.31 1	0.36±				
6137									0.87	0.381 0.17 ND				
6139									12.3	n.				

.)

Table 3 (Cont'd)

	1973		19		19			978		- Jan.	1979	Hay	1980	· Aug.
1D #	90 Urine Conc. pCi/L	137 _{Ce} Urine Conc. nCi/t	90 Sr Urine Conc. pCi/1	137 _{Ca} Urine Conc. nCi/t	90 Urine Conc. pCi/L	Urine Conc. nCi/£	90 Sr Urine Conc. pCi/t	137 _{Ca} Urine Conc. nCi/ <u>t</u>	90 Sr Urine Conc. pCi/1	137 Cm Urine Conc. nCi/t	90 Urine Conc. pCi/1	137 Ca Urine Conc. nCi/g	90 Urine Conc. pCi/t	Urine Conc. nCi/1
6140									5.7 t 6.9	0.17± 0.11				
6144									0.82± 0.76	0.13± 0.050				
6148									0.33 ₁ 0.73	0.13± 0.051	0.22 ± 0.98	0.10 ± 0.050		
6151									3.1 ± 1.5	0.96± 0.11	1.7 ±	1.9 ± 0.091		
6152									2.1 ± 2.5	ND	-0.35 1.2	ND		
6155					3.4 t 0.6	0.50± 0.10			1.7 ± 0.73	2.5 t 0.16	3.9 ±	0.82 ± 0.94		
6159					2.4 ± 0.2	1.2 ± 0.2			0.17± 0.23	0.13± 0.022	0 ±	0.059± 0.027		
6160									5.7 ± 0.95	2.8 ± 0.17	0.27± 0.81	0.33 t 0.066		
6163									0.381 0.42	0.16± 0.054				
6165									0.85± 0.89	0.075± 0.011				

<u>.</u> ---.

Table 3 (Cont'd)

	19	73	19	14	19	76	1	978	1979	- Jan.	1979	- May	1980	- Aug.
	90 Sr Ucine	137 Ux i na	90 Sr Vrine	137 _{Ca} Urine	90 Sr Urine	137 Urine	90 Sr Urine	137 Urine	90 Si Ur ine	137 Urine	90 Sr Urine	137 _{Cø} Urine	90 Sr Ucine	137 Urine
10 #	Conc. pCi/L	Conc. nCi/L	Conc. pCi/L	Conc. nCi/L	Conc. pCi/t	Conc. nCi/L	Conc. PCi/L	Conc. nCi/L	Conc. pti/t	Conc. nCi/L	Conc. PCi/L	Conc. nCi/L	Conc. pCi/L	Conc. nCi/L
6167									0.02± 0.52	0.081± 0.045	1.5 ±	ND		
6175											2.7 ±	ND		
6181											8.2 ±	ND		
Sample Size	2	2	1	2	9	8	16	18	28	26	27	21		
Hean	8.2	1.7	3.8	2.1	6.0	1.5	5.3	13	1.6	2.1	2.4	0.74		
Stad. Dev.	4.8	0.64	-	1.6	5.2	0.79	3.0	4.6	1.7	1.9	2.6	0.63		
1.ou	4.8	1.2	· _	1.0	1.5	0.50	2.0	3.6	0	.075	-0.35	0.046		
flieb	11.6	2.1	_	3.2	9.6	3.2	13	19	5.7	6.5	10	2.1		

Table 4

Urine Activity Concentrations for Former Adolescent Residents of Bikini Atoll

1978, 1979, and 1980

		19	78	Jan.	1979	Hay	1979	Augus	t 1980
1D #	Sex	90 pci/ t	137 _{Cs} nCi/ £	90 Sr pCi/ t	137 _{Cs} nCi/L	90 sr pci/ t	137 Cs nCi/L	90 Sr pCi/ t	137 _{Cs} aCi/t
6127	н	1.710.54	NA	2.2 t0.77	0.6610.037	1.4 ± 1.5	0.2810.066		
6132	н	11 ±2.4	30 ± .55						
6011	н	29 ± 3.1	18 ±0.43			33 1 3.9	0.5310.083		
6065	н					3.0 ± 1.2	0.1810.052		
6169	н					0.781 0.96	ND		
6178	н					1.3 t 1.3	ND		
6183	H					4.4 ± 5.0	ND		
6200	н					4.6 ± 1.5	1.1 10.11		
6131*	н	NA	16 10.44			1.9 ± 1.2	0.7910.095		
6207	н					-1.0 118	ND		
Sample Size		3	3	1	ı	9	5		
Mean		14	21	2.2	0.66	5.5	0.58		
Stnd. Dev.		14	7.6	-	-	11	0.38		
Low		1.7	16	-		-1.0	0.18		

₹.
(Cont
4
Table

) QI	Nigh	6129	1609	6173	8048	6212	Sample Size	Mean	Stud Dev	Lov	lligh			
	Sex		<u> </u>	34.	Çav.	5.	ía,								
61	Sr i/ L	29													
8261	- = -	30													
71	90 Sr PCi / L	ı	0.4714.3					-	0.47	ı	ı	1			
Table 4 (Cont'd)	137 _{Cs} nCi/L	ı	3.2 10.24					-	3.2	i	•	. 1			
. Нау 1979	90 Sr PC i / L	3		1) 114	5.5 1 2.0	-0.11110	-0.04 1.5	4	5.6	0.8	0.11				
6161	137 Ca nCi/L	3		0.5740.11	QN	0.18 10.13	QN	2	0.38	0.28	0.18	0.57			
ngua (· · · ·														
1980	13/Cs nCi/£														

Table 5

Urine Activity Concentrations for Former Children

Residents of Bikini Atoll - 1979, 1980

		Mav	1979	August 1980
ID #	Sex	90 Sr pCi/L	137 Cs nCi/2	
6172	М	3.9 ± 1.5	N.D.	
6156	М	2.7 ± 1.3	N.D.	
6009	M	6.8 ± 3.8	0.15 ±0.052	
6012	М	11 ± 3.4	0.31 ±0.060	
6014	м	3.5 ± 2.2	0.093±0.030	
6043	М	22 ±23	N.D.	
6202	М	6.8 ± 9.4	0.071±0.049	
5208	М	43± 1.1	N.D.	
Sample Size		8	4	
Mean		7.0	0.16	
Stnd. Dev.		6.9	0.11	
Low		-0.43	0.071	
High		22	0.31	
6203	F	32±15	N.D.	
5204	F	22± 1.7	1.0 ±0.11	
6213	F	15± 1.8	и.р.	
6217	F	08± 3.7	N.D.	
Sample Size		4	1	
Mean	:	-0.19	1.0	

Table 5 (Cont'd)

		May	1979	August 1980
ID #	<u>Sex</u>	90 pCi/l	137 _{Cs}	
Stnd. Dev.		.10	- .	
Low		-0.33	-	
High		-0.08	-	

Table 6

Transurante Urine Activity Concentrations at Bikini Atoll Residents: 1975-1977

ID / Name	E41. 1970 219 _{Pu} <u>101/L</u>	EMI. 1971 239 Pu 101/1	1974 1974 239 _{Pu} 161/ 2	EML 1975 Fall 239 Pu 101/4	Ent. 1976 Spring 239 Pa tCi/k	Ent. 1976 Fall 239 _{Pu} 101/ 1	81871. 1977 Spring 239 _{Pu} (C)/1	8M41. 1977 Spring 219 _{Pu} (Ci/L	1.ASL 1977 Spring 239 _{Pa} 1Ci/1	1.ASI. 1977 Fall 239 _{Pu} <u>fCi/f</u>
No 1D	-	-	-	-	-	~	-	-	<10	-
6159	-	•	60	-	-	-	-	<u>-</u>	-	-
813	-	-	-	-	-	-	. 73 10 . 53	0.48 10.45	<10	<10
6166	-	-	10	-	_	-	~	-	-	-
6125	-	-	-	-	-	-	.7310.53	0.48 10.45	<10	•
No 1D	-	-	10	-	-	-	· -	-	-	_
966	-	-	10	-	-	-	0110.64	-0.50 ± .53	-	₹10
6167	-	-	10	-	-	-	0,7310,53	0.48 10.45	-	-
864	-	-	9	-	-	6.21 1.4	1.02 10.63	0.51 ചാ.43	-	40
No 1D	-	-	10	-	-	-	-	-	-	-
No. 1D	-	-	-	-	-		-	-	<10 -	-
6161	-	-	4	-	-		-	-	-	~
No 1D		-	-	-	-		-	-	<10	-
934	-	-	20	-	-	-	-	-	-	-
6117	-	-	-	-	<u>-</u>	•	0.7310.53	0.48 10.45	-	-

1970 1971 1974 239pg 23pg 23pg	•	<u>.</u>	Ī	±	Table EMI.	Table 6 (Cont'd) EHL EML 475 1976		BNA!		Brisd.	
Ponted 20	ID 4 Name	1970 239 _{Fo}	1971 239 _{Pu} 101/8	1974 239Pu fci/L	1975 239Pu fci/L	1976 239 Fu fCi / L	1976 73910 1017		Spring 239ru fci/t	1917 1917 Spring Spring 239pu 161/1 161/1	. [
1	6128	1	1	•	•	ı	1.21 1.2		0.7340.53	0,7310,53 0,48 10,45 0,4610,27 -0,04110,093	0.48 10.45
1	6067	t .		i	ţ	ı	3.91 0.7		ı		
Pauled 3 4 -	1009	1	ı	50	ı	ı	3.11.3.7		1	1	1
Pooled 3 4 - 1112 912 Urine 20	60067	ı	ť	1	ı	ı	21. 121.		1	1	1
Ponted 3 4 -	6210	ı	ŧ	- 1	ı	ı	19. 119.		,		1
Poorled 3 4 - - 1112 912 3.21 2.1 Brine 20 - - - - - - Brine 24 - - - - - - mtrols - - - - - - - - Whije - - - - - - 1.6411.4 Hajure Buspital - - - - - 3.513.5	6126	•	ı		,	ŧ	12. 112.	•	,	,	,
ed 3 4 - 1112 912 3.21 2.1 2 4 - 1212	No 10	1	ı	ı	1	t	3.41 3.4	r		ſ	,
20 24	Porled	. € %	4	1 1	11 12	912	3,24.2.1	, ,	, ,	, ,	
t l' i	Brine Orine	20	1 1	1 1	1 1	1 1	1 1				1 1
i i i i i i i i i i i i i i i i i i i	Controls										
i Nompital :	Fleye	1	1	,	ı	t	1.01 0.6	•			•
1	Wit je	1	ı	1	ı	ı	1.41 1.4	ı		ı	1
	Majure Mospital	t		1	1	1	3.51 3.5	1		ı	1
	11.			1	,	1	1.71 11.7			,	

สแต่ส	Counting Error	noianivad		ra Ta	.ms#	Sounting Series	bashas 12		
•	30	30	***** n		•	10	10		
2/i54	1710d	Mean POINT	. 1715g.	1/100	77 <u>130</u>	1/100	17 ion	1/100	# 01
0.12	0.12	l7°0	17.0	06.0	12.0	\$10.0	£1.0	0,32	55
17.0-	6.12	\$1.10	60.0-	09.0	12.0	910.0	91.0	0710	85
61.0-	0.12	<i>ኒ</i> ታ•0	71.0	91.0	790*0	110*0	60.0	61*0	6519
87.0	06.0	9.1	7.1	6.4	1.5	6,40,0	0.1		1 8119
98. 0-	11.0	\$9.0	£2.0	62.0	0.12	210.0	660.0	81.0	LS
06.0-	6.8	2.5	5.1	1.6	17.0	\$80.0	11	€.1	9909
14.0-	57.0	<i>t</i> \$.0	780*	8.6	0.2	490.0	6.5	٤.9	6112
98.0	17.0	17.0	7.1	2.5	2.1	01.0	67*0	<i>t</i> .1	0909
0.14	0.22	7.1	16.0	7.5	٤٠١	660.0	9 €*0	0.2	7909
0	61.0	77.0	. 75*0	8.2	5.4	250.0	<i>ኒ</i> ታ*0	5.2	1909
1.5	6. 0	06.0	8.£	0.1	0.2	040*0	1.1	£.8	07.09
7.5	7.1	1.5	6.4	6.5	2.5	690.0	61.0	r.s	\$1.09
0.12	0.20	61.0	98*0	87.0	65.0	\$10.0	11.0	EE.0.	1919
090	0.14	12.0	91.0	ሃ € • 0	61.0	£10.0	790.0	97.0	557
	0 117 0 77 77 77 77 77 77 77 77 77 77 77 77	10 21.0 20.20 30 30 30 30 30 30 30	Standard Bank Ban	Standard Standard Standard Standard Standard Strot Standard Standard	Substance Standard Standard	Sing Sing	Sing State State	Sing Sing	10

Table 7 (Cont'd)

	Range	nigh pei/L	0.43	67.	7 47			
	Rang	Low pCi/f	-0.81	-0.02	φ. 0			
	Count ing Error	of Nean PCi/t	0.37	0.18	, ,			
	90) Sr Standard Deviation	of Hean pGi/L	97.0	0.22	0.25			
	11.4)	Nean PGi/E	-0.20	-0.26	3			
	Table 7 (Cont'd)	High nci/f	6.39	0.25	1.7			
·	Table Range	Low nCi/t	0.10	0.13	e.			
	Count ing	Nean nGi/E	0.013	0.010	0.064			
	137 Us Standard Deviætion	ot Hean nGi/E	0.11	0.044	25 O			
		Mean nCi/f	0.23	61.0	2.0			
		=	255	257	z I×			

Table 8
Summary of System Efficiency and MDLS for Field WBC System

Nuclide	Energy	Efficiency	MDL	Time
137 _{Cs}	662 KeV	8.7×10^{-3}	37 Bq (1 nCi)	900 sec
⁶⁰ Co	1173 & 1334 KeV	6.7×10^{-3}	37 Bq (1 nCi)	900 sec
40 _K	1460 KeV	7.0×10^{-3}	222 Bq (6 nCi)	900 sec

Body Burden Data for Medically Registered Adult Males Relocated from Bikini Atoll

				=	19761	1977	1,12		1978		Jam	1979 1979	•	_	May 1979		Ank	Angust 1980	=
	Weight	۔											†						
Hed- ical	in Kilo-		Years	Pot du-	13,08	Pot as-	137 _{Cs}	Potas-	:3		Pot as -	6.0 5.0	137	Pot as -	6000	11)Cs	Pot as-	C (1):	13/c
=	SH 21115	(Xr)	Bikini	S		K1 Juna	1	20	nCi	- 4	El ama	nC i	101	K 4mb	nCi) HC i	K1 dtill B	1	=
80	3	69	0.75	ı		1		97.6	1.42	7.14	ı	ı	1	133	1	0.12		,	1
9009	3	3.	0.75	1	1	1	ı	171	2.39	1.47	1	ı	1	123*	ı	0.1634	134		7:0.
1,00	19	27	4	1	ı	951	0.729	156	4.93	2.34	179	2.5	=	1	,	t		1.2	/RO:
6070	85	28	2	170	0.093	167	1.51	152	B.17	3.92	133	3.0	9.1	,	ı	1			1
6004	દ	28	0.25	1	,	,	ı	167	1.88	1.33	,	•	ı	,	•	ı	1	,	
6033	9.2	11	•	851	0.095	91.1	1.52	132	8.65	3.84		•	,	r	,	•	127	1	350.
601B	69	34	4	861	0.22	ı	ı	180	14.3	5.88		,	ı	ı	ł	1	ι	,	ı
6009	9	35	20	1	ı	ı	ı	132	4.01	1.17	1	1	1	991	5.0	O. 38	:	k	
6068	67	Şę	9	165	0.051	144	0.778	141	6.17	3.07	,	ı		1	1	4	_	i	. 029
1909	74	2 6		•	ı	ĭ	•	151	5.91	2.99	133	5.4	o. 1	691	1.2	0.63	791	1.2	BHO.
9909	*	32	•	ı	1	ı	ı	H71	2.04	0.820	171	1.2	0.48	161	٠	0.45		ŀ	ı
/ 109	\$	67	3 0	1	ı	1	1	153	13.9	5.12	1	1.	,	165	1.5	0.52	_	1	. 1042
61119	9	87	~	ı		6	0.791	107	3.95	1.03	135	2.9	0.39	1	ı	•		7.	100.
1009		99	,	143	0.078		1	126	3.33	1.73	132	6.1	0.11	,	ı	ı		ı	ξξ 0.
6073		74	1	•	,	1.35	0.175	127	4.19	2.18	1	1	1	7.		0.12		7.1	<u>.</u>
6003	2	28	1.5	1	1	1	•	133	3.40	2.08	1	•	1	111	=:	0.16			700.
8009		25	4	:	1	153	1.99	125	2.00	76.	148	3.2	1.3	•	1	ι		 	o r .
9909		46	Ð	12	0.17	149	2.14	151	7.92	3.51	179	2.B	0.86	191	6.1	0.40		e. -	.029
1709		32	0.75	•	1	ı	•	136	2.26	1.12	1 36	1.2	0.93	ı	•	ı	185	1	.05B
9/119		39	~	ı	1	1	,	<u>[0</u>	6.64	3.44	Ξ	5.9	5.4	1	ı	f		<u>-</u> .	.15
6072		97	0.67	1	1	1	1	128	2.96	1.75	ı	ı	1	•	•	ı		à	ı
S IR	28	23	4	ı	1	14.3	0.995	96.1	3.65	1.69	7.7	₹. —	0.61	•	ı	ı		,	•
9 - -		7.7	æ	126	7.7	1	•	80	1.92	0.631	1717	9.	0.75	126	6.0	0. 4.1 0			X. :
97.19		£ ;	.7	1 -		67	2.21	= :	7.19	3.	ı	ı	ı	,	•	:		ı	.012
6003		22	30 ·	8 9	0.076	9	0.923	6 .	2.60	2.44				r	1	1		,	• •
(13)		22	۰ ب	ŧ	ı	691 -	5.5	871	6.09	2. td	172	2.9	0.6 0.6	168	1.5	0.44			.022
0710		٦ <i>۽</i>	• •	1 3		651	67:1	· ·		6.6	133	7.7	76.U	1	۱ :	;		? `	7
6009	£ 2	c	0.58	60 -	2.0	<u> </u>	*C -	55	2.63	76.7	771	- 6	. o	* 0 1	0.7	cc.,	62	. i	810
6130		29	0.42	1	1	٠	ι	143	2.20	95-1	1 26		1.5	134	ı	0.97		,	590.
6119		13	1	1	1	96.1	0.641	124	4.58	2.13	,	. ,	1	•	•	1		t	t
864		2	1	163	0.29	133	3.23	91.1	5.99	3.05	1	•	,	•	,	1		ı	,
906		95	^	í	•	162	2.22	174	14.8	5.71	,	ı	ŀ	149	2.5	87.0		ı	120.
6135		35	-	1	1	ı	ı	142	3.30	2.12	ı	ı	ı	1	t	1		ı	9.
9609		87	C	1	ı	145	1.93	951	4.32	16.1	146	2.5	1.3	156	6.0	0.7		i	.051
6002		65	7	,	1	130	1.0%	911	2.21	1.26	1	ı	:	1	ı	1		ı	•
61613		34	\$	97.1	0.081	ı	1	1	ı	1	142	ı	0.109	126	1	0.048		,	t
0160		28	^	120	0.012	ı	•	1	1	ı	146	,	0.023	971	ı	0.011		ı	.002
P 1844	3	59	'n	9	0.043	1	,	ı	ı	ı	92	•	0.067	77	ı	0.025	148	ı	(B.
62104	£	35	2	156	0.124	141	0.74	1	ı	ı	ı	ı	ı	991	ì	0.29	_	1	670.
	; ;																		

Conard, M.A., BHL 50424.

Personal communication with S. Cohn.

Individuals left Bikini Atoll 8 months prior to the August 1978 Relocation Program.

"Individuals received sick call medical care prior to April 1978 but were not officially registered.

*Data obtained August 1979.

Body Burden Data for Medically Registered Adult Females Relocated from Bikini Atoll

				61	19761	19772	1,2		1978	!	Jan	mary 1979	<u> </u>		Hay 1979		Aug	861 180	9
	Weight		;					:						;		•			
Med- ical	Kilo-		Years	Fot as -	137 _{C8}	Fot du-	137	Fotas-	60 Co	13, Ca	Pot se-	00 00	1370	Fot as-	رن س	137 _{C8}	Fotos ==	60 _{Co}	137Cs
=	F 418	3	Bikini	S	grams pici	20	nci	g Canus	nC i	IICi	8mr 1.7	nCi	10.1	2 de 12	nCi	17:1	61 ams	nC:i	1101
6045	93	28	0.75	1	1	•	ı	95	1.79	1.15	ı	1	ı	*911	ı	0.075*	130	1	61n.
6112	3	35	_	ı	ı	ı	1	96	2.18	1.76	76	9.1	0.9B	118	•	97.0	109	1	.023
9119	24	32	0.75	,	1	;	•	62	1.40	0.818	102	ı	0.13	ı	ı	1	119	1	.0055
1119	9 8	32	0.5	•	ı	r	•	100	2.11	1.31	101	1.2	0.53	ı	•	1	108	1	120.
6122	7.3	92	2	76	0.033	,	•	98	3.20	1.34	93	9.1	0.31	90	-:	o. 1	96	ı	.0050
6123	11	3	7	ı	r	20	1.53	66	3.81	1.41	126	2.5	0.62	16	i	0.25	104	7.	110.
6509	45	13	_	ı	ı	,	,	90	1.33	0.861	ı	,	•	ı	ı	r	105	t	. oo.
6063	67	57	1,	ı	:	87.6	0.799	=	3.16	1.52	. 1	ι	ı	•	ı	ı	ı	t	ř
6032	Ç q	32		1	•	7.96	1.88	001	5.49	3.07	*	1.1	0.17	109	0.1	0.76	5.5	ı	. 0044
6124	53	54	0.58	ı	ι		1	7	1.27	0.957	1	ř	ı	,		1	85	į	.0004
8019	98	57	4	96	0.029	98.0	907.0	93	2.48	0.129	114	9.	0.53	ł	ı	1	112	ı	770.
6058		2	~	106	0.077	B. au	0.690	75	4.63	2.0g	1		ı	•	• .	,	1	,	1
6113		57	4	1	1	1.16	0.534	16	2.33	1.03	701	<u>:</u>	0.30	107	•	0.11	4	ŧ	.0064
\$909		-	7	ı	ı	Ξ	0.734	93	2.39	90.1	96	. .	0.36	,	ı	ı	113	ı	. 0080
6097		61	7	96	0.036	88.9	0.468	96	2.15	1.27	95	0.1	0.34	99	•	91.0	99	ı	610.
6019		2	4	ı	1	911	0.621	88	1.49	0.411	106	٠	0.060	911	ı	0.018	93		.0013
9509		()	1.75	1	1	44.3	0.833	001	3.83	2.10	ı	1	ı	70	1.2	0.36	9	ŧ	770.
8609		2	_	ı	ŧ	91.4	0.706	93	2.38	168.	99	1.2	0.47	9.5	ı	0.18	<u>=</u>	1	.0030
0709		22	7	1	•	ŗ	,	8	5 .00	1.39	105	1	0.18	115	t	0.028	ı	1	1
90.36		71	0.34	ì	ı	•	ı	7.3	1.54	1.53	ı	1	•	1	ı		•		i.
9119		32	•	Ξ	0.1	1	ı	z	3.98	1.50	ı	1	ı	9	1	0.1	911	7.	FROO.
525		33	0.75	1	ı	ı	ı	106	2.96	2.36	ı	ı	•	109	•	0.33	85	ı	710.
5009		2	7	1	ı	ı	t	8	2.55	0.907	7,4	9.	0.45	89 80	ľ	0.22	8	ı	= =
1919		32	٥	ı	,	!	ı	=	3.62	2.22	ŧ	r	ı	1	1	,		ı	1 :
6051		<u>5</u> :	∽	ı	ì	95.9	0.545	99	2.25	1.44	1	ı	ı	æ :	٠ ;	0.045	26	1	6 1 .
934		3	٥	1	ı	9.86	2.73	=	9.0	7.48	ı	,		501	7:1	0.48	9 01		270.
2909	X ;	. ?	4 .	•	ŀ	96.8	0.840	5 5	2.53	7.44	, 5	۱ ,	1 6	2	1	0.088	6	, ,	cron.
۲ <u>۱</u>		₹ :	، و	. :	1 4	-	0.573	100 ()	7.	9/ 7	3 3	۲٠,	6.6	1 4		· .	, 6	Ì	0.000
6115		. ,	~ '	56	0.058	65.9		2 3	4.10	2.28	7	.	27.O	£ ;	7.0	9.5	5 3	٠,	0000.
6034		97	_	707	0.12	95.7	0.995	7.	26.0	J. 6	ı	1	•	<u> </u>	· -	0.13	9	7:	700.
865		45	_	29	0.018	4.69	0.558	2	9. ·	= :	ı			87	o	c : : :		1	
9 9 9 9 9		77	7	ı	ı	112	7 . 14	3	3.42	0''.	ı	1	ı	, !	1		2	•	¥10.
6167		29	^	68	0.030	ı	1	•	,	,	92	1	0.015	6	1	0.007	1	•	25 00 .
6159	_	23	4	124	0.073	ı	ı	1		ı	===	1	0.028	125		0.012	127	ı	.023
61483		7.5		9	0.018	•	1		ı	ı	35	r	0.037	96	ı	0.015	96	ı	\$500.
6163		38	ı	t	,	14.2	0.570	ı	ı	ı	136	t	0.061	1	ı	ı	1	1	ı
61513		Ξ	7	1	t	102	0.971	r	1	1	æ /	ı	0.121	11	t	0.029	t	ı	1

Iconard, N.A., BHL 50424.

2 Personal communication with S. Cohn.

3 Individuals received sick call medical care prior to April 1978 but were not officially registered.

4 Individuals left Bikini Atoll 8 months prior to the August 1978 Relocation Program.

5 Individuals left Bikini Atoll 14 months prior to the August 1978 Relocation Program.

5 Andividuals left Bikini Atoll 14 months prior to the August 1978 Relocation Program.

Table 11

Body Burden Data for Hedically Registered Adolescents Relocated from Bikini Atoll

Med- in A ical Kilo- A ID grams (Y	Α			-		13/0			James y 1979	-		77			1
	Age of	fears Poi	Potas - sium	13, cs	Pot ag-	99 09	137,63	Por se	90 90	137 _C	Fotas-	60 _{Co}	137Cs	Potas-	137 _{Cs}
			S Came	nC:	E 1 0 013	nCi	n _C r	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nC1	133	2 C C W W	nC1	- C	201	1271
93	2 4.5			0.959	;	ı	ı	2	ţ	0.204	76	1	0.075	95	300.
13	2 2			,	58	3.45	1.85	ı	ı	ı	•	ı	1	8.2	86.00.
- #1	و. ب		ş	1.11	69	3.40	1.69	108	2.1	0.76	133	۱.4	0.32	£.1	STO.
0',	9			ı	5.3	- ×	0.830	59	1.0	0.055	7.4	1	0.017	1.66	.000
32	1 1			0.824	53	2.17	0.732	95	9.7	0.21	9	1	0.053	92	.0033
27	1 1			I .	53	3.43	2.09	ı	1	1	55	0.1	0.022	59	ı
29	-	42	t	1	23	1.18	1.28	3.	ı	0.071	09	1	0.016	ŧ	1
Feina Les															
1 87	3 4		16	0.682	69	1.32	. 744	23	1.2	0.27	. 68	•	0.076	901	,0044
07	3 0.25	25	,	4	92	2.61	2.05		1	ı	121	•	0.074	801	, 00 I 4
43	3 6		1	1	69	2.20	1.17	103	۱.4	0.15	98	ı	0.037	Ì	i

~75

13

Table 12

Body Burden Data for Medically Registered Children Retocated from Bikini Atoll

					1978	!	1979 Tremel	1979	9791 KrH	979	August 1980	1980
Med-	in in		Years	Pot as	9	137,	Pot da -	137	Potas-	; ;	Pot au	-
9	Krams Krams	(l.)	Bikini	ST CAME	nCi	nci pci	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FC: C3	8 1 118 Erana	i v. Cs proj	8 1 1.co	137Cs
Males												
6009	20	9	4	96	98.0	1.26	ŧ	,	59	0.007	*	0100
6079	23	œ	2	41	2.7	1.71	1	1	` '		29	.0032
6042	23	-	0.25	43	0.1	1.07	1	ı	ı	ı	` '	1
7109	20	S	1.34	13	1.1	3.	1	1	69	0.012	95	ı
6012	7.4	1	7	7,	1.7	1.27	ı	ı	63	0.022	58	.0025
6023	28	æ	4	52	1.7	1.28	43	0.16	,	1	11	ı
9109	23	9	~	53	2.5	1.43	ı	ı	51	0.039	62	7100.
6013	2)	•	7	33	1.3	90.	ı	1.	,	ı	ı	1
6031 *	70	S	•	ı	ı	i	ı	ı	35	0.0028	37	1
6709	2	•	Ş	1	ı	ı	1	1	25	0.0047	87	.0009
¥0019	7.	S	4.3	,	ı	•	1	1	. 54	0.015	43	ı
6021*	51	ŗ	4.3	ı	ı	,	NC NC	0.046	21	0.0062	63	ı
6020	20	•	7	ı	1	,	7.5	0.056	37	0.0074	38	ŧ
6107*	15	s,	4.3	1	,	ì	97	910.0	40	0.0026	37	f
* 7/09	20	٠	4.3	ı	ı	ı	34	600.	25	ı	•	ι
49119	14	s	-	1	,	ı	ı	ı	ı	•	13	1
Fema les												
3609	. 3	0	•	75	2.3	2.03	,	ı	•	ı	ı	,
6092	29	30	•	25	2.8	2.25	,	1	ı	1	•	ı
9080	ጟ	,	0.58	9,		0.543	1	1	ı	J	ı	t
0109	29	20	,	26	8.	1.41	20	0.17	1	1	"	.0021
86.09	21	ø	7	7.5	<u></u>	. 8	1	ľ	1	١,	53	6100.
6105	7.7	\$	~	=	1.2	0.967	65	0.053	53	0.0074	51	ı
6103	•	5	C	4.8	7.	1.40	i	i	1	•	66	9700
6028	25	- :	~ .	25	٠.4	1.26	•	1	67	0.015	75	1100
00.00	3 2	2 1	c	3 3	0.0	2.38	5	0.26	2	0.064	63	8100.
7709	77	پ د	n v	2	o	<u> </u>	90	750.0	· 1	1 0000	ę	ı
6025	23	·	· -	77	6	: -	. 47		3 3	0.000	, \$	1 1
1809	76	, 5 ^	0.67	67	,	1.02) 1	,	; '		' '	ı
9017	2.2	9	•	35	ı	0.622	37	0.077	77	0.013	53	ı
6078*	13	2	ı	ı	t		28	0.0030	1	,	1	ı
* 8809	15	^	4.3	•	1	,	ı	ı	33	0.0030	•	i
0609	25	9	s	f	۲,	1	;	ı	31	0.0049	4.7	1
1019	5	٠	5.3	ı	ı	ı	13	0.051	- 12	0,0069	36	ı
¥9509	2	•	4.3	,	1	ı	¥	0.046	64	0.0074	17	i
6057	26	^	_	1	ı	ı	•	r	99	0.0058	33	ı
×67.09	<u>-</u>	^	_	:			ı	1	ı	1	33	
	1											

NC = Not calculated Andividuals less than 5 years of age on 4/27/78

ette an ebel getratifantet barert tul nerbird beid at ib bramme

100 (154 (17) (155 (17) (17) (17) (17) (17) (17) (17) (17)	100 100
(134 (71)) (134 (100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100	

Table 13 (Lunt 'd)

afft ut efat betiebtedenet entete bil entftand beid et if fo fremmit

Paris Results	10.00.00 10.00.00 10.00.00 10.00.00 10.00.00	(0.02 bt)
1395. of beauties	6124 (1010) he4 e5 0 73 6124 (600) 0	(104 81.0) Par 0.0 10 884 Par 0.0
Boarder Countral	=	3
137 _C	1.2 th 1.2 th 1.2 th (0.03 pc)	1.9 44.4 (0.10 40.0) 1.4 40.4 (0.10 40.0)
Provide Williams	0.10 th 0.00 pc(1) 12 th (0.32 pc(1)	(10 to 10 to
County 1979	2	z
155c. freedes		10 M M 10
Part of	104 AC 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reader Country	:	:
12 m		19 19 19 19
Life.	25 Mg C C C C C C C C C C C C C C C C C C	13 th (6.41 to 24 th (3.9 to (3.9 to
Bunker Countre	=	:
	4.75 1613 1.0 24 1613 10.11 1613	
1077	6170 07 II 6170 07 II 6170 67 07 II	20 kby (0.55 PCs) 120 kby (0.4 pc))
Compter Compter (5)	•	;
P. C.	i	3.9 kM (0.11 pc) 3.1 kM (0.00 pc)
139. of Braults 1934(5)	1	0.47 684 (0.018 60.0) (0.018 60.0) (0.018 60.0)
Economics 1974(5)	a !	- -
#116 (m/c)	All Calders of	Tulal Average 31

id - the face everlable for the specific column.

(1) the sails, counted as Distas, was a wisited from Dengelop Atell. We crossined has only with our staff while as Distas and externed as blong with me. His body count was not used in this table.

(1) a sis much vid child's due has not been tecluded in this table and category due to the difference in gaumenty between a baby and mes collibration plantane. (1) the maje title in this as given was counted twice to determine that affact observeding princ to the budy count had un the final coult. Unly use total us and for this individual elece buth coults were similar.

The 1918 mean value for all individual count includes the 3 to year ago group while the 1811 mean value has no representation to this comple section and the 1814 mean value has me child topicorniction. 3

The 1914 (Ch. 13) and 1917. Le budy buiden date were ubisined from b. Cohin, Brouklaren Barjonal Leburatory, Medical Department.

Table 1+

Comparison of Observed

Versus Expected Reduction Factors

Description	# of Persons	Mean Reduction Factor
Expected Reduction Factor for Adult Males (1)	NA	2.4
Observed Reduction Factor for Adult Bikini Males	17	2.3
Expected Reduction Factor for Adult Females (2)	NA	3.5
Observed Reduction Factor for Adult Bikini Females	16	3.8
Expected Reduction Factor for Children Ages 5-14(2)	NA	5.9
Observed Reduction Factor for Children Ages 5-14	12	12.

NA = Data Not Available

⁽¹⁾ Effective half time obtained from ICRP Publication 10A (ICRP 71).

⁽²⁾ Effective half time obtained from NCRP Report 52 (NCRP 77).

137 Ca biological Removal Rate Constants for Marshallese Adult Hales

	1_P		4.6×10-3								6.7x10-3			6.9×10 ⁻³	7.9×10-3				6.4×10^{-3}		6.2×10^{-3}		V N
1	1-4-1		4.5×10 ⁻³								6.7x10-3			6.6×10^{-3}	7.6×10-3				5.8×10-3		6.0x10-3		¥¥
×	1-0	4.7×10-3	4.0x10-3	NA	6.2×10-3	V.	5.0×10-3	NA	W	4.7×10-3	6.7×10^{-3}	5.2x10-3	5.0x10-3	5.3×10^{-3}	6.3x10-3	5.9×10-3	7.4×10-3	$6.3x10^{-3}$	3.8×10-3	8.3×10-3	5.4×10-3	7.4×10-3	7.3x10"3
137,64	101		8.8x10-2								2.9 ki0-2			2.8×10-2	2.2×10-2				6.5×10^{-2}		5.3x10-2		2.8×10 ⁻³
	Date		8/1/80								7/30/80			08/1/8	1/31/80				1/31/80		1/31/80		7/31/80
137 _{C4}	ICi	8.6×10^{-2}	.63	.45	4.2x10-2	6.8x10-3	5.5×10-2	1.6x10-1	7.8×10-3	1.0x10-1	07.	5.8x10-2	1.5x10-1	141	77.	4.2x10-2	2.1x10-2	1.8x10-2	.97	2.1×10 ⁻²	01.	.048	110.
137,64	,	8/2/80 8.6x10 ⁻²	69. 67/11/5	5/18/79 .45	7/31/80 4.2x10 ⁻²	7/31/80 6.8×10 ⁻³	7/31/60 5.5×10 ⁻²	8/1/80 1.6x10-1	7/31/80 7.8×10-3	8/1/80 1.0x10-1	5/16/79	8/3/80 5.8×10~2	7/31/80 1.5x10-1	17. 61/11/5	5/16/79	8/4/80 4.2x10-2	8/5/80 2.1x10-2	8/4/80 1.8x10-2	16. 61/51/5	7/31/80 2.1×10-2	01. 61/91/5	5/11/19	110. 61/91/5
	,	8/5/80	6//11/5	5/18/79	7/31/80	7/31/80	1/11/80	8/1/80	1/31/80	8/1/80	6/19/15	8/3/80	7/31/80	61/11/5	61/91/5	09/5/8	8/5/80	08/4/8	5/15/79	1/11/80	61/91/5	61/11/5	6//91/5
	Date	1.1 8/2/80	1.0 5/11/79	6/18/19	.52 7/31/80	.39 7/31/80	.77 77.	.12 8/1/80	.16 7/31/80	1.3 8/1/80	66/91/5 98.	.93	2.4 7/31/80	61/11/5 21.	61/91/5 06.	.92 8/4/80	.33 8/5/80	.32 8/4/80	1.5 5/15/79	.48 7/11/80	1.3 5/16/79	. 109	.023 \$/16/79

137 Ca Biological Removal Rate Constants for Marshallese Adult Males (Cont'd)

¥		N						W		
×	1-P	W						MA		
¥	d-1	9.1×10-3	6.0x10-3	NA	6.3x10-3	WA	W	NA	MA	6.0x10-3
1376	lici	7.3x10-3						HDI.		
	Date	8/1/80						08/11/6		
137 _C	pCi	.025	2.9×10^{-2}	7.1x10-3	1.5×10-2	4.4×10-3	5.4×10-3	MOL	5.9×10 ⁻³	620x10-3
137 _C	,		•••		8/4/80 1.5x10-2	•	-		•	
	Date	5/11/19	08/11/4	08/16/6		9/4/RO	6/191/5	5/16/79	7/30/80	8/19/19
	µCi Dare	. 61/11/2	. 290 7/11/80	6.0x10 ⁻³ 7/31/80	08/5/8	MDI. 8/4/80	5.8x10 ⁻³ 5/16/79	2.4x10 ⁻³ 5/16/79	34x10 ⁻³ 7/30/80	1220×10 ⁻³ 5/16/79

137 Ca Biological Removal Rate Constants for Morahallese Adult Pemales

ᆂ	1.2x10 ⁻³			1.26x10 ⁻²	8.21×10-3			9.2x10-3									1.9×10-3				9.8×10-3	
뮯	7.1×10 ⁻³			1.19x10-2	8.15x10-3	NA		9.1x10 ⁻³		NA	NA		NA				7.5×10-3				9.6×10^{-3}	
¥Ī	6.7x10-3	8.7x10-3	6.1x10-3	9.1x10-3	7.86×10-3	9.5x10 ⁻³	6.07×10-3	8.9×10-3	8.3×10 ⁻³	5.8×10-3	1.2×10-2	6.7×10^{-3}	8.3×10-3	9.8x10-3	7.7×10-3	7.9x10-3	5.8×10-3	NA	7.4×10-3	NA	9.2x10 ⁻³	8.9×10-3
137 _C	2.3x10-2			5.0x10-3	1.1×10-2	4.4×10-3		6.4x10-3		1.7×10^{-2}	1.3×10^{-3}		3.0×10-3				1.1×10-2				6.8×10-3	
	Date 7/30/80			7/31/80	7/31/80	7/31/80		8/2/80		7/31/80	08/16/4		7/31/80				7/31/80				7/30/80	
137 _{Ce}	1101	5.5x10-3	2.1x10-2	ι.	.25	.26	2.2×10-2	Ξ.	8.0×10-3	91.	810.	2.2×10-2	91.	.059	8.3×10-3	1.4×10-2	.22	1.9410-1	2.2×10-2	3.5×10-3	.17	7.5×10"3
	S/16/19 .46	8/3/80 5.5x10 ⁻³	8/4/80 2.1x10 ⁻²	11. 67/91/5	\$2. 61/11/5	5/16/79 .26	8/1/80 2.2x10 ⁻²	11. 61/91/5	8/2/80 8.0×10-3	91. 61/91/5	810. 67/91/5	8/2/80 2.2x10-2	81. 61/11/5	61/1/5	1/31/80 8.3x10 ⁻³	8/4/80 1.4x10-2	5/15/79 .22	1/31/80 1.9x10"1	7/31/80 2.2x10-2	7/31/80 3.5x10 ⁻³	51.6/19	8/1/80 7.5x10"3
		8/3/80	8/4/80	8/191/5	61/11/5	6//91/5	08/1/8	5/16/79	8/5/80	61/91/5	5/16/79	8/2/80	61/11/5	61/11/5	1/31/80	8/4/80	61/51/5	1/31/80	1/31/80	7/31/80	61/01/5	08/1/80
137 _C	S/16/19	.12 8/3/80	.53 8/4/80	61/91/5	.62 5/11/19	.17 5/16/19	08/1/8 65.	.30 \$/16/79	.36 8/2/80	61/91/5	.060 5/16/79	.36 8/2/80	61/11/5	61/11/5	.11 7/31/80	.32 8/4/80	.42 \$/15/79	.045	.48 7/31/80	08/16/7 880.	61/01/5	08/1/80

Table 15 (Cont'd)

13 Ca Biological Removal Rate Constants for Marshallese Adult Females (Cont'd)

×				6.1x10-3						9.0×10 ⁻³				
¥	1-6	¥	NA	6.6×10-3		NA	NA	NA .	NA	8.9×10-3			W	YIV.
¥	1-P	6.7×10^{-3}	8.2×10-3	8.5×10-3	6.4×10-3	2.7x10 ⁻²	1.1x10-2	9.8×10-3		8.4×10-3	8.4×10-3	8.4×10-3	7.4×10-3	
137 _C	ıci	3.2×10 ⁻³	2.3×10 ⁻²	5.5×10 ⁻³		2.4×10-3	5.6×10-4	2.0×10-3	4.8×10-3	7.3×10-3				
	Date	1/31/80	8/2/80	7/31/80		8/1/80	7/31/80	8/1/80	8/2/80	8/2/80				
137 _{C•}	LCi	6200.	210.	\$10.	650.	1.7×10-3	8.6×10^{-3}	13×10 ⁻³	3.9×10^{-3}	150×10-3	140×10-3	5.2×10 ⁻³	4.6×10 ⁻³	3.4×10-3
	bate	6//91/5	6/11/18	61/91/5	61/11/5	8/11/18	61/11/5	6/11/5	61/91/5	61/91/5	61/11/5	61/11/5	61/11/5	61/91/5
1376	16.1	310.	.028	.037	.121	3.8×10-3	27×10-3	37×10^{-3}	2.4×10-3	390×10 ⁻³	360×10-3	11×10-3	8.5×10^{-3}	2.7×10-3
	Date	1/24/19	1/24/19	1/23/19	1/23/79	1/22/19	1/22/19	1/22/19	1/23/19	1/23/79	1/24/19	1/24/19	1/25/19	1/25/19
	â	6167	6519	8719	1519	6137	0119	7719	6152	6155	0919	6175	6181	6185

Table 15 (Cont'd)

137
Cu Biological Removal Rate Constants for Marshallese Adolescents

		137 _C		137 _{Ce}		137 _{Ce}	ĸ	ĸ	ĸ
10/	Date	<u> </u>	Date	<u> pci</u>	Date	<u>pci</u>	_d ⁼ 1	<u>d</u> -1	<u>d</u> -1
Hales									
6147	1/23/79	. 204	5/16/79	.075	7/31/80	3.5x10 ⁻³	8.9×10^{-3}	N	IA
6131	1/23/79	.76	5/16/79	.32	8/1/80	1.5x10 ⁻²	7.6x10 ⁻³	7.7×10^{-3}	7.7x10 ⁻³
6011	1/23/79	.055	5/16/79	.017	7/31/80	9.0x10 ⁻⁴	1.1x10 ⁻²	N	ia.
6127	1/22/79	.21	5/16/79	.053	8/1/80	3.3x10 ⁻³	1.2x10 ⁻²	1	NA.
6133	5/16/79	. 022	7/31/80	6.6×10-4			NA		
6015	1/24/79	.071	5/17/79	.016			1.4x10 ⁻²		
6178	1/24/79	2.0x10 ⁻³	5/17/79	1.7x10 ⁻³			NA		
Pemales									
6129	1/22/79	.27	5/17/79	.076	7/31/80	4.4x10-3	1.1x10 ⁻²	ŀ	IÁ.
6048	5/21/79	.074	8/5/80	1.4×10^{-3}			NA		
6091	1/24/79	.15	5/17//9	.037			1.3x10 ⁻²		
6173	1/24/79	4.0x10 ⁻³	8/1/80	2.2×10 ⁻³			NA		
6170	1/24/79	2.8×10 ⁻³	5/17/79	1.8×10-3	7/31/80	9.7x10 ⁻⁴	NA		
6141	1/22/79	2.7×10 ⁻³	5/16/79	1.5×10 ⁻³			NA		

137 Ca Biological Removal Rate Constants for Marshallese Children

⊼ <u>.</u> b																				
¥ - P				N	Y.	¥.			W	Y.		M		W	YN.					¥
1				. 2-1	1-3	7-1		1-2					1-1			3-2)-2)-1	1-2
≥ - - 	YY.	MA	NA	2.0x10	1.9×10	2.4×10-2	YN N	1.9×10-2	NA	W		NA	1.5x10 ⁻³	NA NA		2.0×10-2	1.8×10-2	WA	9.2x10-3	1.9×10 ⁻²
137 Ca				3.0×10-4	5.0x10-4	3.2×10-4			1.9×10-3	1.0×10^{-3}		4.7×10-4		6.5×10 ⁻³	9.5×10-4					3.4×10-4
Date				7/30/80	7/31/80	08/1/8			08/1/8	7/31/80		08/16/2		8/3/80	8/1/80					7/30/80
137 _{C•} µCi	7.6×10-4	9.0x10-4	9-01×0.9	6.2×10-3	7.4×10-3	2.6x10-3	7.5×10-4	1.4x10-3	3.4×10-3	1.9×10-3		1.1×10-3	3.4×10^{-3}	1.2×10-3	1.5x10 ⁻³	6.9×10^{-3}	7.4×10-3	5.4×10-4	2.1×10-3	7.4×10-3
Date	08/1/8	7/31/80	8/1/80	6//91/5	6//91/5	6//91/9	7/31/80	7/31/80	61/11/5	6/19//5		5/16/79	8/3/80	5/18/19	5/16/19	61/51/5	5/16/79	8/5/80	08/16/6	6//91/5
137 _{Co}	2.8×10-3	4.7x10-3	15x10-3	46×10-3	56x10 ⁻³	16×10-3	91.	1.3	2.0×10^{-3}	2.8x10-3		4.0x10-3	7.2×10 ⁻³	3.5×10 ⁻³	4.0x10-3	51×10-3	46×10 ⁻³	5.8x10-3		.053
Date	61/51/5	61/51/5	61/51/5	1/24/19	1/22/19	1/23/19	1/22/19	5/15/79	1/24/19	1/54/19		1/24/75	1/24/19	1/24/19	1/23/79	1/24/79	61/57/1	61/12/5	1/23/79	1/23/79
TD/ Halas	1603	6039	0019	6021	6320	6107	6023	9109	9519	6172	Yemales	1719	6157	6158	0519	1019	9509	1509	0109	\$019

Table 15 (Cont'd)

137

Co Biological Removal Mate Constants for Marshallese Children (Cont'd)

137 _{Co} 137 _{Co} 137 _{Co} K K K 110i bate pti d-1 d-1		08/11/1	5/16/79 .064 7/31/80 1.8x10 ⁻³	5/16/79 .028	5/16/79 .013 7/31/80 2.7x10-4	5/16/79 1.0x10 ⁻³ 7/31/80 1.0x10 ⁻³
·		08/11/1	•	6//91/5	5/16/79	6//91/5
Date	(F, 1002)	5/15/79	1/22/19	1/23/19	6160 1/23/79	1/22/19

Table 16

Comparison of Hean Long Term 17: Biological Removal Rate Constants for the Pormer Bikini Atoll Population

							•	
Population Description	Group	K.d ⁻¹	Group	K, 4 ⁻¹ 1/79-8/80	Group	K.d-1 5/79-8/80	Group	Average K.d-1
Adult Hales (22-594)	01	.0061+.0017	13	.0057+.00094	12	.0068+.0010	35	.0062+.0012
Adult Femules (19-70a)	21	. 0084 · . 0016	2	.00824.0017	12	.0084+.0016	97	.00834.0016
Adolescents (11-15a)	•	.011+.0022		1100.	-	.0077	•	.0100024
Juveniles (5-10a)	6	.0184.0035	~	.00724.0050	•	.015±.0064	71	700.±310.

Table 17

Body Burden Data for Non-Medically Registered Adult Male Prior Residents of Bikini Atoll

						.] 4	muary		Hay	A	ngust
1D #	Age (yr)	lleight (cm)	Weight (kg)	Yrs. On Bikini	Yre. Off Bikini	1979 137 _{Ca} Result nCi	1979 Potanulum Remult Gram	1979 137 _{Ca} Result nGi	1979 Potavojum Resolt Gram	1980 137 _{Ca} Result <u>nCi</u>	1980 Potawaium Result Gram
6136	48	150	58		4	8.5	144	***			a. 10
6138	20	163	57		3	2.8	165				
6153	23	160	65	1	1.42	5.8	1 70	5.4	146	~	
6168	16	150	44	7	1.0	2.4	101	Nima.	100		104
6174	52	174	84		6	17	158		~~	****	
6180	22	173	67	4	1	34	141			5.9	153
6182	18	161	53	6	0.42	1220	122	620	131		
6190	19	166	57	0, 25	2	 ·		6.0	161	7.1	153
6205	42	170	81	4	4.5				159	~-	
6211	19	163	55	t	3				134		
6218	56	158	72	2 .	10				169		
6219	30	173	60	2	9				143		
6220	26	166	66	2	9				165		
6221	53	175	82	2	9			4.2	139		

Table 17 (Cont'd)

Body Burden Data for Non-Hedically Registered Adult Hale Prior Residents of Bikini Atoll

						Jul	James		Нау	¥	August
9	Age (Yr)	Height (cm)	Weight (kg)	Yre. On Bikini	Yre. Off Bikiai	1979 137Ca Recult	1979 Potausium Reault Gram	1979 137Cs Result nCi	1979 Porassium Result Gram	1980 137Ca Reault nCi	1980 Potassium Result Gram
6223	99	152	65 May	2 days . Hay 14, 15, 1979	910.	1	ţ	66	121	2	135
6224	53	158	55 Hay	2 dayw Nay 14, 15, 1979	910°.	1	ł	120	146	1	1
6226	18	791	58	2		ļ	ļ	i	137	7.7	152

Table 18

Body Burden Data for Non-Medically Registered Adult Female Prior Residents of Bikini Atoll

						January	nuary		Мау	Y	August
10	Age (yr)	Height (Cm)	Weight (kg)	Yra. On Bikini	Yra. Otf Bikini	1979 1376s Result	Pot aus ium Reault Gram	1979 137Co Regult	Potana ium Reault Grum	1980 137 _{Cs} Result	1980 Pot ann ium Renult Gram
6137	25	191	3	0.33	4	3.8	113	1.1	112	2.4	66
6139	22	071	ЭR	1	6	2.1	68	l	;	;	1
0110	91	146	46	0.17	0.42	2.7	ž	æ ••	¥	1	69
9519	21	150	77	-	0.42	37	105	13	68)	2.0	ł
6152	20	151	59	-	1.42	2.4	123	3.9	111	4.8	148
6155	77	155	99	ø	0.42	390	120	150	95	7.3	88
0919	\$9 ,	153	\$\$	٥	0.67	360	67	071	87	!	!
6165	95	142	3	1	1.5	9.9	92	1	;	i	;
6175	74	155	63	1	1	=	0 6	5.2	92	!	;
1819	77	151	\$\$	7		8.5	105	4.6	105	1	1
6185	21	144	41	6	2.5	2.7	7.	3.4	61	i	69
6187	21	152	¥	0.019		!	i	1.6	101	ř	;
6819	21	155	1	2.5	_	1	ł	6.1	114	1	1
9029	32	151	13	5	5.5	!	ţ	1	911	1	;
6222	39	95.	99	2.5	E	i	ŀ	ŀ	86	1	l I

Table 19

Body Burden Data for Hon Medicully Registered Adolescents Prior Residents of Bikini Atoll

						Jei	January		Мау	Y	August
9	Age (Yr)	He ight	Weight (kg)	Yrs. On Bikini	Yra. Off Bikini	1979 137Cs Result	1979 Potassium Result Gram	1979 137Cs Result	1979 Potassium Result Grau	137Ca 137Ca Reault nCi	1980 Potassium Result Crate
Males											
6919	71	191	97	,	1.0	1.2	108	1	120	ł	1
8713	17	151	1	J.	1.0	2.0	94/	1.7	0/		1
6183	12	139	35	!	1.67	1.0	36	1	*	. 1	:
6200	14	155	43	-	и.	!	1	110	Ξ	1	i
6225	=	125	25	~	1.33	;	1	1	53	1	;
6207	12	138	35	4	4.5	!	1	1	78	1	:
Females											
6173.	13	142	4.7	-	0.42	0.4	З	1	87	2.2	74
0719	2	140	45		1.0	2.8	28	1.8	"	16.	001
6162	13	141	20	ļ	1.5	5.0	9 6	1	1	1	i I
6212	2	151	20	-	c	ţ	!	1	7.3	i	1 6
1719	13	138	33	•		2.7	63	1.5	112	;	09
6188	71	146	67	Э	1	;	1	2.9	107	1	: •

Table 20

Body Burden Data for Non-Hedically Registered Children Prior Residents of Bikini Atoll

						Ja	nuary		Нау	A	ugust
<u>ID #</u>	Age (yr)	tle i glit (cm)	Weight (kg)	Yrs. On Bikini	Yre. Otf Bikini	1979 137 _{Cs} Result	1979 Potassium Result Grum	1979 137 _{Ce} Result nCi	1979 Potassium Result Craw	1980 137 _{Ce} Result nCi	1980 Potassium Result Gram
Males											
6156	9	130	34	6	1.0	2.0	53	3.4	59	1.9	75
6164	5	85	15		1.5	8.0	40				
6172	10	130	30	7	1.0	2.8	40	1.9	74	1.0	73
6202	6	100	19	5.3	.72			1.8	53		Ta
6208	10	136	33	4	4.5				76		
6145	5	110	2 i			1.0	46				**
6186	5	104	20			~~			22		
Female	•										
6179	8	115	22	4	i	1.2			59		
6177	6	103	18		6				36	~-	
6176	8	144	24		6				38		***
6171	6	96	15	2.67	1.0	4.0	16	1.1	47		29
6157	. 5	106	20	4	1.0	7.2	32		54	3.4	44
6158	6	103	20	4	1.0	3.5	32	1.2	46	6.5	53

--

Table 20 (Cont'd)

						J	nuary	·	Hay		ugust
ID #	Age (yr)	lle i ght (cm)	Weight (kg)	Yrs. On Bikini	Yra. Off Bikini	1979 137 _{Ce} Result nCi	1979 Potassium Result Gram	1979 137 _{C4} Result nCi	1979 Potannium Renuit Gram	1980 137 _{Ca} Result nCi	1980 Potassium Result Grum
Penale	u (cont	' a)	•								
6150	8	120	25	4	0.42	4.0	42	1.5	40	.95	45
6149	5	99	19	4.3	0.42	1.6	37		32		42
6203	5	92	15	4.3	.72		∞ •		54		
6204	5	104	21	;	.72			1.1	57		
6142	10	126	26	0	~~	2.3	52	1.0	72	1.0	67
6143	4	104	19	U		1.2	41		35		
6191	6	113	23	0			** **	1.1	61		
6213	10	121	25	1	3				56	~-	
6217	10	-126	25	2	9				44		

Table 1:
Comparison Adult Males from Kili

			Augus	1980
Name	<u>ID#</u>	Age	137 _{Cs}	Potassium Grams
	2102	30	1.2x10 ⁻²	164
	2103	20	1.3x10 ⁻²	173
	2104	37	1.1x10 ⁻²	166
	2105	38	9.5x10 ⁻³	170
	2107	38	1.5x10 ⁻²	177
	2114	35	6.2x10 ⁻³	172
	2116	45	8.1x10 ⁻³	134
	2117	49	7.2×10^{-3}	158
	2118	27	7.3x10 ⁻³	162
	2100	50	9.4×10^{-3}	152
	2101	54	9.1x10 ⁻³	156
	1109	22	1.3×10 ⁻²	176
	1111	34	1.5×10^{-2}	191
	1098	34	8.4×10^{-3}	191
	1101	37	1.6x10 ⁻²	188
	1102	39	3.1×10^{-3}	112
	1103	55	6.5x10 ⁻³	121
	1104	26	5.7×10^{-3}	135
	1105	22	3.9×10^{-3}	136
	1107	36	2.8×10 ⁻³	180
	1106	26	1.4×10 ⁻³	184
	1108	23	7.5×10^{-3}	189

Table 21 (Cont'd)

Comparison Adult Males from Kili (Cont'd)

			Augus	1980
Name	ID#	Age	137 _{Cs} uci	Potassium Grams
	1110	40	1.3×10 ⁻²	156
	2120	34	6.0x10 ⁻³	158
	2121	46	5.4×10^{-3}	152
	2122	56	9.4×10^{-3}	138
	2123	25	1.7×10 ⁻²	180
	2124	22	3.7x10	143
	2125	28	3.4×10^{-3}	147

Table 21 (Cont'd)

Comparison Adult Males from Majuro

			Augus	t_1980
Name	ID#	Age	137 _{Cs} uCi	Potassium Grams
	1047	31	6.1x10 ⁻³	184
	2084	32	8.3x10 ⁻³	168
	2085	55	3.2×10^{-2}	112
	2087	62	1.7×10 ⁻²	134
	2089	21	3.5×10^{-3}	149
	2019	26	1.4×10^{-2}	152
	2060	50	3.0×10^{-2}	122
	2065	44	1.2×10^{-2}	137
	1048	70	9.1×10^{-3}	144
	1056	62	8.2×10^{-3}	131
	1074	34	5.2×10^{-3}	143
	1076	35	8.2×10^{-3}	174
	1084	80	6.3×10^{-3}	155
•	1088	19	4.4×10^{-3}	191
	1089	21	5.4×10^{-3}	168
	1090	27	1.6×10^{-2}	179
	1091	34	3.2×10^{-3}	169
	1092	29	8.5×10^{-3}	183
	1004	44	4.8×10^{-3}	136
	2028	17	2.2×10^{-3}	136
	2050	17	2.5×10^{-3}	133

Table 22 PRIVACY ACT MATERIAL REMOVED

Comparison Adult Females from Majuro

			Augus	t 1930
Vame	ID#	Age	137 _{Cs} uCi	Potassium Grams
	2015	36	2.3x10 ⁻³	97
	2091	40	4.0×10^{-3}	117
	2055	38	4.7x10 ⁻³	98
•	2059	32	9.6x10 ⁻³	86

Comparison Adult Females from Kili

·			Augus	t 1980
Name	ID#	<u>Age</u>	137 _{Cs} uCi	Potassium Grams
	2119	45	2.5x10 ⁻³	99

Table 26

Whole Body Counting Census

Date Counted	Total Counted	Medically Registered Population Total in April '78	Bikinians Medically Registered in April '78	Number of Hedically Registered Population Total Counted	Number of Relocated Bikini Residents Counted	Number of Non-relocated Residents Counted
April 1978	99	143	135	99	99	
January 1979	101	143	135	53	64	33
Hay 19/9	129	143	135	63	79	44
January plus Hay 1979 Non Duplicate Counts				82	98	50

Bikini Medical Pegistry included 34 persons under 5 years of age and not eligible for whole body counting in April 1978.

Table 27

Census of Medically Registered, Whole Body Counted, Relocated Bikini Residents

Date Counted	Adult Males	Adult Females	Male Adolescents Ages 11-15	Female Adolescents Ages 11-15	Male Children Ages 5-10	Female Children Ages 5-10	Total Persons Counted	Medically Registered Population Total in April 1978*	X of Medically Registered Population Counted
April 1978	36	32	6	3	8	14	99	143	69
January 1979	17	16	4	2	1	6	46	143	32
May 1979	14	19	5	3	4	6	51	143	36
January plua May 1979 Duplicate Counts	7	11	4	. 2	0	. 4	28	143	20

^{*}Bill Scott-Medical Dept-BNL

Census of Non-Medically Registered Persons and Medically Registered Children Uhole Body Counted Only in 1979 Table 28

TUTAL	Non-residents.	Relocated residents medically registered.	Relocated residents, not medically registered.	Non-relocated residents.	January 1979/	Date Counted/
10	0	•	N	\$		Adult
16	0	c	~	=		Adult
•	0	•	-	w		Male Adulescents Ages 11-15
*	-	c	-	2		Female Adolescents Ages 11-15
92	-	.	c	u		Male Children Agea 5-10
13	2	٧	N	6		Pemale Children Agea 5-10
55	4	7.4	=	ננ		Total Persons Counted

Table 28 (Cont'd)

Date Counted/ Classification	Adu l t <u>Ha l ea</u>	Adolt Females	Male Adolescenta Ages 11-15	Female Adolescents Ages 11-15	Male Children Ageo 5-10	Female Children Ages 5-10	Total Persons Counted
May 1979/							
Non-relocated residents.	12	12	5	2	3	8	42
Relocated residents not medically registered.	3	5	2	1 '	. 1	4	16
Relocated resi- dents medically registered.	0	0	0	0	7	5	12
Transient.	2	0	0	0	0	0	2
Non-resident.	0	O	o	2	1	3	6
TOTAL.	17	17	7.	5	12	20	78
January and May 1979 Duplicate Counta	6	13	4	3	6	12	44

^{*}All but one individual in this classification recounted in May 1979.

Table 29

Summary of Residence Location for Parsons Whole Body Counted in January and May 1979

Residence Atolls - Islands

		Maj Ejit	uro- Rita	<u>Kili</u>	Jaluit- Jabor	Total Counted
Group/Class						
Relocated Marshallese/	Jan	26	37	1	0	64
Residents of Bikini Atoll	May	34	30	15	0	79
Nonrelocated Marshallese/	Jan	4	29	0	0	33
Residents of Bikini Atoll	May	3	24	0	17	44
Controls	Jan	1	3	0	0	4
	May	3	3	0	0	6

Table 30

Frequency Distribution of Residence Location in January 1979

Residence Atolls - Islands

	Maj Ejit	juro- Rita	<u>Kili</u>	Jaluit- Jabor	Total Counted
Relocated Medically Registered:					
Adult Males	8	8	1	0	17
Adult Females	8	8	0	0	16
Adolescent Males	1	3	0	0	4
Adolescent Females	1	1	0	0	2
Male Children	1	0	0	Ö	1
Female Children	3	3	0	0	6
Relocated Nonmedically Registered	l:				
Adult Males	0	2	0	0	2
Adult Females	2	. 3	0	0	5
Adolescent Males	0	1	0	0	1
Adolescent Females	0	1	0	0	1
Male Children	1	3	0	0	4
Female Children	1	4	0	0	5
Other Nonmedically Registered:					
Adult Males	2	6	0	0	8
Adult Females	2	9	0	0	11
Adolescent Males	0	3	0	0	3
Adolescent Females	0	3	0	0	3
Male Children	1	3	0	0	4
Female Children	0	8	0	0	8

Table 31 Frequency Distribution of Residence Location in May 1979

		Residence	Atolls	- Islands	
	M Ejit	ajuro- Rita	<u>Kili</u>	Jaluit- 	Total Counted
Relocated Medically Registered:					
Adult Males	6	5	3	0	14
Adult Females	9	7	.3	0	19
Adolescent Males	3	2	0	0	5
Adolescent Females	1	1	1	0	3
Male Children	1	0	3	0	4
Female Children	3	3	0	0	6
Relocated Nonmedically Register	ed:				
Adult Males	1	1	1	0	3
Adult Females	3	2	0	0	.5
Adolescent Males	1	1	0	0	2
Adolescent Females	0	1	. 0	0	1
Male Children	3	4	1	0.	8
Female Children	3	3	3	0	9
Other Nonmedically Registered:					
Adult Males	1 -	4	0	9	14
Adult Females	2	8	0	2	12
Adolescent Males	0	3	0	2	5
Adolescent Females	1*	2**	0	1	4
Male Children	1*	2	0	1	4
Female Children	1*	3**	0	2	11

^{*}individual is part of the control population.

**one or more individuals participated in the program as a control.

Table 31

Medically Registered Relocated Adult Male ID Number,

		Janu	1979	Ÿ	<u> 1979</u>
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atol1-Island
80				5/21	Kili
5006					Kwajalein-Ebeye
863	-	1/23	Majuro-Rita		Majuro-Ejit
6070		1/24	Majuro-Rita		Maloelap
6004					Jaluit
6033					Majuro - (Rita?)
6018					Wotje
6069				5/15	Majuro-Rita
6068					Majuro - (?)
6067	-	1/24	Majuro-Rita	5/17	Majuro-Rita
6066		1/24	Majuro-Rita	5/18	Majuro-Rita
6017			***	5/21	Kili
6019		1/22	Majuro-Ejit		Majuro-Ejit
6001		1/22	Majuro-Ejit		Majuro-Ejit
6073				5/15	Majuro-Ejit
6005				5/21	Kili
6008		1/23	Majuro-Rita		Majuro-Ejit
6086		1/23	Majuro-Ejit	5/16	Majuro-Ejit
6071		1/23	Majuro-Ejit		Kili
6076		1/22	Majuro-Ejit		Majuro-Ejit
6072					Kili

Table 32 (Cont'd)

Medically Registered Relocated Adult Male ID Number.

Name and Residence Location (cont'd)

		•		
813	1/22	Majuro-Rita		Kili
6118	1/24	Majuro-Rita	5/17	Majuro-Rita
6126	~~~			Kili
6003				Ugelang
6117	1/24	Majuro-Rita	5/16	Majuro-Rita
6128	1/25	Kili		Kili
6125	••••		5/18	Majuro-Ejit
6007	1/23	Majuro-Ejit		Kili
6130	1/22	Majuro-Ejit	5/15	Majuro-Ejit -
6119				Majuro- (Rita?)
864				Majuro-Ejic
966			5/15	Majuro-Ejit
6135				Lib
6096	1/22	Majuro-Ejit	5/16	Majuro-Ejit
6002				Kili

Table 23

Medically Registered Relocated Adult Female ID Number,

Ÿ	,	Jan	uary 1979	May 1979	
ID#	<u>Name</u>	Count Date	Residence Atoll Island	Count Date	Residence Atoll-Island
6045					Kwajalein-Ebeye
6112		1/24	Majuro-Rita	5/16	Majuro-Rita
6114		1/23	Majuro-Ejit		Kili
6111		1/23	Majuro-Ejit		Kili
6122		1/22	Majuro-Ejit	5/16	Majuro-Ejit
6123		1/22	Majuro-Ejit	5/17	Majuro-Ejit
6059					Kili
6063					Deceased
6032		1/22	Majuro-Ejit	5/16	Majuro-Ejit
6124			700		Kili
6108		1/23	Majuro-Rita		Majuro-Rita
6058				***	Kili
6113		1/23	Majuro-Rita	5/16	Majuro-Rita
6065	•	1/22	Majuro-Ejit		Kili
6097		1/23	Majuro-Rita	5/16	Majuro-Rita
6109	-	1/23	Majuro-Rita	5/16	Majuro-Rita
6046		and all the same		5/15	Majuro-Ejit
6098		1/22	Majuro-Ejit	5/17	Majuro-Ejit
6060		1/24	Majuro-Rita	5/17	Majuro-Rita
6036	•	~~~			Jaluit
6110				5/21	Kili

Table 33 (Cont'd)

Medically Registered Relocated Adult Female ID Number, Name and Residence Location (cont'd)

525			5/21	Kili
6064	1/24	Majuro-Rita	5/15	Majuro-Rita
6061				Wotje
6051			5/15	Majuro-Ejit
934			5/15	Majuro-Rita
6062			5/16	Majuro-Ejit
6035	1/24	Majuro-Rita	***	Maloelap
6115	1/23	Majuro-Ejit	5/16	Majuro-Ejit
6034			5/21	Kili
865			5/15	Majuro-Ejit
6050				Kili

Table 34

Medically Registered Adolescents (Ages 11-14) ID Number,

		<u>Ja</u>	nuary 1979	May 1979		
ID#	Name	Count Date	Residence and Island	Count Date	Residence Atoll-Island	
Males:						
6132					Kili	
.6131		1/2.	Majuro-Rita	5/16	Majuro-Ejit	
6011	-	1/23	Majuro-Rita	5/16	Majuro-Rita	
6127		1/22	Majuro-Ejit	5/16	Majuro-Ejit	
6133				5/15	Majuro-Ejit	
6015		1/24	Majuro-Rita	5/17	Majuro-Rita	
Females:						
6129		1/22	Majuro-Ejit	5/17	Majuro-Ejit	
6048				5/21	Kili	
44.5-						
6091		1/24	Majuro-Rita	5/17	Majuro-Rita	

Table 35

Medically Registered Children (Ages 5-10) ID Number.

			uary 1979		1979
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
Males:					
6009				5/21	Kili
6049					Kili
6042					Jaluit
6014				5/21	Kili
6012				5/21	Kili
6023		1/22	Majuro-Ejit		Majuro-Ejit
6016				5/15	Majuro-Ejit
6013					Kili
Females:					
6094					Wotje
6092	-				Wotje
6080					Kili
6010		1/23	Majuro-Ejit		Majuro-Ejit
6038					Kili
6105		1/23	Majuro-Ejit	5/16	Majuro-Ejit
6103			***		Maloelap
6028				5/15	Majuro-Ejit
6030		1/22	Majuro-Ejic	5/16	Majuro-Ejit
6027		1/23	Majuro-Rita		Majuro-Rita
6044				5/15	Majuro-Rita
6025	·	1/23	Majuro-Rita	5/16	Majuro-Rita
6081					Majuro-Ejit
6106		1/23	Majuro-Rita PRIVAC	5/16 	Majuro-Rita
					· ·

Table 36

Nonmedically Registered Adult Female ID Number,

·		Januar	<u>y 1979</u>	May	1979
ID#	<u>Name</u>	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
6137		1/22	Majuro-Ejit	5/17	Majuro-Ejit
6139		1/22	Majuro-Ejit		Majuro-Ejit
6140		1/22	Majuro-Ejit	5/17	Majuro-Ejit
6144		1/22	Majuor-Ejit	5/17	Majuro-Ejit
6148		1/23	Majuro-Rita	5/16	Majuro-Ejit
6151		1/23	Majuro-Rita	5/17	Majuro-Rita
6152		1/23	Majuro-Rita	5/16	Majuro-Rita
6155		1/23	Majuro-Rita	5/16	Majuro-Rita
6159		1/24	Majuro-Rita	5/17	Majuor-Rita
6160		1/24	Majuor-Rita	5/17	Majuro-Rita
6163		1/24	Majuro-Rita		Majuro-Rita
6165		1/24	Majuro-Rita		Majuro-Rita
6167		1/24	Majuro-Rita	5/16	Majuro-Rita
6175		1/24	Majuro-Rita	5/17	Majuro-Rita
6181		1/25	Majuro-Rita	5/17	Majuro-Rita
6135		1/25	Majuro-Rita	5/16	Majuro-Rita
6187				5/16	Majuro-Ejit
6189				5/16	Majuro-Rita
6206		-		5/21	Jaluit-Jabor
6222			***	5/21	Jaluit-Jabor

Table 37

Nonmedically Registered Adult Male ID Number,

•		Janua	ry 1979	<u> </u>	1av 1979
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
6136		1/22	Majuro-Ejit		Majuro-Ejit
6138		1/22	Majuro-Ejit	-	Majuro-Ejit
6153		1/23	Majuro-Rita	5/16	Majuro-Rita
6161		1/24	Majuro-Rita	5/17	Majuro-Rita
6166		1/24	Majuro-Rita	5/16	Majuro-Rita
5168		1/24	Majuro-Rita	5/16	Majuro-Rita
6174		1/24	Majuro-Rita		Majuro-Rita
6180		1/25	Majuro-Rita		Enewetak-Enewetak
6182	·	1/25	Majuro-Rita	5/16	Majuro-Rita
6184		1/25	Majuro-Rita	5/17	Majuro-Ejit
6190				5/16	Majuro-Ejit
6205				5/21	Jaluit-Jabor
6210	,			5/21	Kili
6211	•			5/21	Jaluit-Jabor
6218				5/21	Jaluit-Jabor
6219			***	5/21	Jaluit-Jabor
6220				5/21	Jaluit-Jabor
6221			. 	5/21	Jaluit-Jabor
6223				5/21	Jaluit-Jabor
6224		PRIVACY ACT M	MATERIAL BEMOVED	5/21	Jaluit-Jabor
6226		***		5/21	Jaluit-Jabor

Table 38

Nonmedically Registered Adolescent ID Number.

Name and Residence Location

•		Jan	uary 1979	<u>Ma</u>	y 1979
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
6200				5/17	Majuro-Rita
6207		~~~		5/21	Jaluit-Jabor
6225	•			5/21	Jaluit-Jabor
6188				5/16	Majuro-Ejit
6212		4000 40		5/21	Jaluit-Jabor
6147		1/23	Majuro-Rita	5/16	Majuro-Ejit
6169		1/24	Majuro-Rita	5/16	Majuro-Rita
6178		1/24	Majuro-Rita	5/17	Majuro-Rita
6183		1/25	Majuro-Rita	5/16	Majuro-Rita
6173		1/24	Majuro-Rita	5/17	Majuro-Rita
6170		1/24	Majuro-Rita	5/17	Majuro-Rita
6162		1/24	Majuro-Rita		Aur
6141		1/22	Majuro-Rita	5/16	Majuro-Rita

Nonmedically Registered Juvenile ID Number.

		<u>J.</u>	anuary 1979	<u>Ma</u>	av 1979
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
6186				5/16	Majuro-Ejit
6202				5/21	Kili
6208				5/21	Majuro-Ejit
6191				5/16	Majuro-Ejit
6203				5/21	Kili
6204		-		5/21	Kili
6213				5/21	Jaluit-Jabor
6217	-	-		5/21	Jaluit-Jabor
6156		1/24	Majuro-Rita	5/17	Majuro-Rita
6164		1/24	Majuro-Rita	-	Aur
6172		1/24	Majuro-Rita	5/16	Majuro-Rita
6179		1/24	Majuro-Rita	5/17	Majuro-Rita
6177		1/24	Majuro-Rita	5/17	Majuro-Rita
6176		1/24	Majuro-Rita	5/17	Majuro-Rita
6171		1/24	Majuro-Rita	5/16	Majuro-Rita
6157		1/24	Majuro-Rita	5/17	Majuro-Rita
6158		1/24	Majuro-Rita	5/18	Majuro-Rita
6150		1/23	Majuro-Rita	5/16	Majuro-Rita
6149		1/23	Majuro-Rita	5/16	Majuro-Rita
6142		1/22	Majuro-Rita	5/16	Majuro-Rita
6143		1/22	Majuro-Rita	5/17	Majuro-Rita

Table 39 (Cont'd) Nonmedically Registered Juvenile ID Number,

		<u>J.</u>	anuary 1979	<u>Ma</u>	av 1979
ID#	Name	Count Date	Residence Atoll-Island	Count Date	Residence Atoll-Island
6145		1/22	Majuro-Ejit		Majuro-Ejit
6031				5/15	Majuro-Ejit
6029				5/15	Majuro-Ejit
6100				5/15	Majuro-Rita
6021		1/24	Majuro-Rita	5/16	- Majuro-Rita
6020		1/22	Majuro-Ejit	5/16	Majuro-Ejit
6107		1/23	Majuro-Rita	5/16	Majuro-Rita
6074		1/24	Majuro-Rita	5/17	Majuro-Rita
6078		1/23	Majuro-Ejit		Kili
6088		-		5/15	Majuro-Ejit
6090				5/15	Majuro-Ejit
6101		1/24	Majuro-Rita	5/15	Majuro-Rita
6056		1/24	Majuro-Rita	5/16	Majuro-Ejit
6057				5/21	Kili

Table 40

Medically Registered Relocated Bikini Atoll Residents

Not Whole Body Counted Since 1978

Location ID # Name <u>Sex</u> Age 6132 Kili 12 M 6049 8 Kili M 6042 Jaluit 7 M 6013 5 Kili M 6094 10 F Wotje 6092 8 Wotje F 6080 7 Kili F 6038 Kili 6 F 6103 9 F Maloelap 6081 9 Majuro, Ejit F 6006 37 Kwajalein, Ebeye M 6004 28 Jaluit М 6033 27 M Majuro 6013 34 М Wotje 6068 Majuro 56 M 6072 20 М Kili 6126 35 Kili M 6003 22 M Enewetak 6119 17 Majuro M 864 Majuro, Ejit 51 M 6135 35 M Lib 6002 65 Kili M

Table 40 (Cont'd)

Medically Registered Relocated Bikini Atoll Residents

Not Whole Body Counted Since 1978 (cont'd)

<u>ID #</u>	Age	<u>Name</u>	<u>Sex</u>	Location
6045	28		F	Kwajalein, Ebeye
6059	19		F	Kili
6124	54		F	Kili
6058	18		F	Majuro, Ejit
6036	27		F	Jaluit (Rongelap)
6061	32		F	Wotje
6050	22		F	Kili

Total Missed = 30

Table 41

Individual Dosimetry Data for Bikinians Explanation of Column Headings

Column	Item or Derived Quality	Measured Quantity	Comments
1	Name	-	Personal Interview
2	ID Number	-	BNL Medical Dept. & S&EP Div. Records
3	Residence Inverval	-	Personal Interviews
4	90 Sr and 90 Y Bone Marrow Dose Equivalent During and Post Residence Interval	Urine Activity Concentration	Three Compartment Model, Constant Continuous Uptake
5	137 Cs + Ba Dose Equivalent During and Post Residence Interval	Body Burden Measurements	Two Compartment Model, Monotonically Increasing Uptake
6	Net External Dose Equivalent During Residence Interval	External Exposure Rate Measurements	Assumed Living Patterns
7	Total Body Dose Equivalent	-	Sum of Columns 5 & 6
8	Total Bone Marrow Dose Equivalent During and Post Residence Interval	-	Sum of Columns 4, 5, and 6

INDIVIDUAL DOSINETRY DATA FOR BIKINIANS

Name	ID Namber	Residence Interval	Sr & Y Bone Harrow Dose Equiv. During & Post Residence Int.	137 _{Co} + 137m _{Ba} Dose Equiv. During & Post Mesidence Int. mRess	Net External Dose Equiv. During Residence Interval mRes	Total Body Dose Equiv. During & Post Residence Int. MRess	Total Bone Marrow Dose Equiv. During and Post Residence Interval mRem
	6001	7.3	130*	480	950	1400	1600
	6127	7.3	39	580	950	1500	1600
	6130	.72	49	200	94	300	300
	6076	3.3	9.9	900	430	1 300	1 300
	813	4.3	77*	600	560	1200	1200
	6019	5.3	190	420	690	1100	1300
	6111	. 80	7.7	150	100	250	260
	6097	4,3	51*	430	520	950	1000
	6115	7.3	97	760	880	1600	1700
	6109	4.3	51*	240	520	760	810
	6091	6.3	74*	\$50	760	1300	1400
	6132	2.3	62	1200	300	1500	1600
	6046	2.0	27	400	240	600	700
	6061	6.3	65	630	760	1400	1500

INDIVIDUAL DOSIMETRY DATA FOR BIKINIANS (Cont 1)

Naioc	ID <u>Number</u>	Residence Interval	90 Sr & 90 Y Bone Marrow Dose Equiv, During & Post Residence Int, mRcm	137 _{Ca} + 137 _m _{Ba} Done Equiv. During & Post Residence Int. mRem	Net External Dose Equiv, During Residence Interval	Total Body Dome Equiv, During & Post Residence Int. autem	Total Bone Harrow Bose Equiv, During and Post Residence Interval mRem
	6066	3.3	59*	400	430	830	890
	6070	10.3	1854	870	1 300	2200	2400
	6118	6.3	42	420	820	1200	1300
	6117	6.3	110*	610	820	1400	1500
	6128	7.3	130*	810	950	1800	1900
	6122	10.3	86	380	1200	1600	1700
	6015	1.7	31 *	650	220	870	900
	6030	3.3	39*	1200	400	1600	1600
	6129	4.3	51*	330	520	850	900
	6027	3.3	394	760	400	1200	1200
	6010	7.3	#6.≠	1100	900	2000	2100
	6105	3.3	39*	1100	400	1500	1500
	6033	8.3	150*	900	1100	2000	2100
	6007	. 88	15 · ·	190	110	300	310
	6008	4.3	//*	850	560	1400	1500

INDIVIDUAL DOSIMETRY DATA FOR BIKINIANS (Cont'd)

Навес	ID <u>Number</u>	Residence Interval C)	90 Sr & 90 Y Bone Marrow Dose Equiv. During & Post Residence Int. makes	137 _{Cs} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. sukem	Net External Done Equiv, During Residence Interval nRes	Total Body Dose Equiv. During & Post Residence Int. mkes	Total Bone Marrow Done Equiv. During and Post Residence Interval
	6071	1.0	18*	220	1 30	350	370
	863	4.3	120	620	600	1200	1300
	6086	8.3	240	990	1100	2100	2 300
	6069	8.3	150*	580	1100	1700	1900
	6073	7.3	130*	490	950	1400	1600
	6072	1.0	18*	330	1 30	460	480
	6119	7.3	130*	730	950	1700	1800
	864	7.3	130*	960	950	1900	2000
	966	7.3	130*	1400	950	2300	2500
	6059	1.3	15*	240	160	400	410
	6124	.88	104	180	110	390	400
	6058	5.3	63*	550	600	1200	1300
	6036	. 64	7.6*	260	77	340	340
	6110	8.3	98 *	450	1000	1400	1500
	6051	5.3	63*	520	600	1200	1200

PRIVACY ACT MATERIAL REMOVED

PRIVACY ACT MATERIAL REMOVED

		Sr. £ 90 v 137 c + 137mbs Nut External Hone Harrow	137 _{Ca} + 137m _{Bd}	Net External	Total Body	Total Bone Harrow
13 Namber	Residence Interval	Done Equiv. Daring & Post Residence Int. maken	Done Equiv. Nuring & Post Residence Int.	Bose Equiv. busing Residence Interval	Dose Equiv. During & Post Residence Int.	Dowe Equiv. During and Post Residence Interval
93	6.3	74.4	1600	909	2400	2400
0809	. 89.	104	200	011	310	320
80.09	2.3	27*	1100	280	1400	1400
03	1.1	19*	1200	400	0091	1600
82	5.3	₹9	1200	009	1800	1 900
4	5.3	₹ [9	1600	009	2200	2300
29	4.3	*15	240	520	1100	1100
. 35	7.3	#98	080	9006	1800	1900
9	7.3	B 6.	430	006	1300	1400
92	2.3	21*	410	300	710	74.0
6009	4.3	11*	1600	909	2200	2300
6	2.3	+17	1600	300	0061	1900
6042	35.	104	\$10	z	280	590
7	1.6	₹67	1300	210	1500	1500
6012	7.3	130*	1500	950	2400	2600
9109	7.3	1304	1500	950	2400	2600

INDIVIDUAL DOSIMETRY DATA FOR BIKINIANS (Cont'd)

Name	ID <u>Muder</u>	Residence Tuterval &	90 Sr 6 90 Y Bone Marrow Dowe Equiv. During & Pout Residence Int. mRem	137 Co + 137m Dose Equiv. During & Post Residence Int. mRem	Net External Dowe Equiv, During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mRem	Total Bone Marrow Dose Equiv. During and Post Residence Interval adding
	6013	2.3	41*	1 300	300	1600	1600
•	6094	6.3	74*	1300	800	2100	2200
	6005	1.8	12	470	230	700	710
	6135	1,3	11	330	170	500	510
	6125	9, 3	45	890	1200	2100	2100
	6067	7.3	54	780	950	1700	1800
	6002	2,3	7.7	370	300	670	680
	6006	1.0	9.5	260	230	490	500
	6112	1.3	12	260	160	420	430
1 .	6035	6.3	140	600	760	1400	1500
	6113	4.3	19	360	520	880	900
	6060	2.3	21*	510	280	790	820
	6032	3.3	39*	860	400	1400	1400
	6123	4.3	50*	480	520	1000	1100
	6098	3.3	39*	320 ,	400	720	760

INDIVIDUAL DOSINETRY DATA FOR BIKINIANS (Cont'd)

Name	Nampe E ID	Residence Interval	90 Sr & 90 Y Bone Marrow Done Equiv. During & Poot Residence Int.	137 _{Cs} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. mHem	Not External Done Equiv. During Residence Interval mRes	Total Body Dose Equiv. During & Post Residence Int. mRem	Total Bone Marrow Dose Equiv. During and Post Residence Interval
	6065	4.3	130	390	520	910	1000
	6004	.55	10*	130	72	200	210
	6018	6.3	150	1100	820	1900	2100
	6126	2.3	45	1100	300	1400	1400
	6003	8.3	250	580	1100	1700	t 900
	6114	1.0	12*	170	120	290	300
	6096	3,3	46	680	430	1100	1100
	80	1.0	18*	200	130	330	350
	6017	8.3	330	1200	1100	2300	2700
	6045	1.0	9.0	150	120	270	280
•	6108	4.3	43	210	520	7 30	770
	6063	4,3	19	620	520	1100	1100
	525	1.0	5.6	350	120	470	480
	934	6.3	120	1300	760	2100	2200
	6068	6.3	60	630	820	1500	1600
	6106	3.3	39*	750	400	1100	1200

INDIVIDUAL DOSTMETRY DATA FOR BIKINIANS (Cont'd)

Naise	ID Number	Residence Interval	90 Sr & 90 Y Home Marcow Dose Equiv. During & Post Residence Int. mkem	137 _{Co} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. mRcm	Net External Dose Equiv. During Residence Interval	Total Body Dose Equiv. During & Post Residence Int. mRem	Total Bone Marrow Dome Equiv. During and Post Residence Interval
	6025	3.3	39*	900	400	1 300	1 300
	6064	7.3	86*	400	900	1300	1400
	6023	4.3	77*	990	560	1500	1600
	6131	6.3	110*	950	820	1800	1900
	6011	6,3	170	550	820	1400	1600
	6081	.97	12*	490	120	610 .	620
	6133	7.3	130*	1 900	950	2800	3000
	6048	.55	6.5*	590	72	660	670

^{*}These values were derived from average male or average female daily activity ingestion rates for Sr-90.

Table 42

1978 Cs Body Burden of Bikinians Ordered by Family Group

			Charles 5	
		***	Status of	
Rank	Medical ID	WATO	Family Member	Body Burden kBa
1	6018	unknown	H	220.0
	6061		W	82.0
	6094		C(F)	75.0
	6092	•	C(F)	83.0
2	966		H	210.0
	934		W	200.0
	6016		C(M)	53.0
	6044		C(F)	43.0
3	6017		H	210.0
	6034		w	140.0
	6009		C(M)	- 47.0
4	6070	unknown	Н	150.0
	6035		W	100.0
5	6033	unknown	Н	140.0
	6058		W	77.0
6	6126	unknown	Н	120.0
	6050		W	50.0
	6132		C(M)	68.0
	6038		C(F)	37.0
	6049		C(M)	63.0
	6013		C(M)	37.0
7	864		Н	110.0
	865		W	49.0
	6119		C(M)	79.0
	6133		C(M)	78.0
	6028	•	C(F)	47.0
	6091		C(F)	43.0
	6090		c()	
8	6068	-	Н	110.0
	6112		W	65.0
	6118		C(M)	23.0
9	6117		Н	99.0
-	6063		W	56.0
10	6125		н	93.0
	6062		W	53.0
		*		

•	•			
Rank	Medical ID	WATO	Status of Family Member	Body Burden kBq
11	6003		Н	90.0
	6097		W	47.0
12	863		н	87.0
	6113		W	38.0
	6025		C(F)	38.0
13	6073		н	80.0
	6051		W	53.0
14	6005		н	77.0
	6046		w	78.0
	6014		C(M)	56.0
15	6008	unknown	H	72.0
	6108		w	27.0
	6027		C(F)	43.0
16	6128		Н	69.0
	6131		C(M)	63.0
•	6011		C(M)	31.0
17	6072	unknown	H	65.0
	6059		W	32.0
18	6001	unknown	H	64.0
	6122		w	49.0
	6076		C(M)	130.0
19	6071	unknown	H.	64.0
	6111		W	49.0
	6081		C(F)	38.0
20	813	•	H	62.0
	6065		W	39.0
21	6007	unknown	H	55.0
	6114		w	30.0
	6080		C(F)	20.0
22	6130		Н	54.0
	6098		W	33.0
23	6006	unknown	н	54.0

Rank	Medical ID	WATO	Status of Family Member	Body Burden kBq
24	6004	unknown	н	49.0
	6036		W	57.0
	6042		C(M)	39.0
25	6069		H	43.0
	6064		w	34.0
	6103		C(F)	52.0
26	80		Н	42.0
	525		W	87.0
	6048		C(F)	76.0
	6012		C(M)	47.0
27	6019		Н	38.0
	6123		W	52.0
	6065		C(F)	39.0
	6023		C(M)	47.0
28	6066		Н	30.0
	6060		w	51.0
29	6110		W	56.0
	6127		C(M)	27.0
	6010		C(F)	52.0

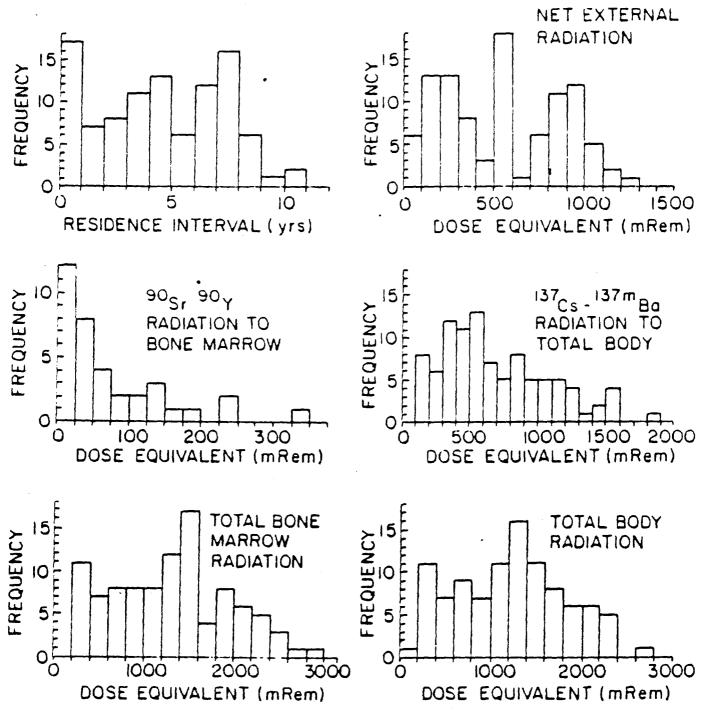


Fig. 1. TOTAL MALE AND FEMALE DISTRIBUTION OF DOSE EQUIVALENT (DURING AND POST RESIDENCE) OR RESIDENCE INTERVAL FOR INHABITANTS OF BIKINI ISLAND, BIKINI ATOLL

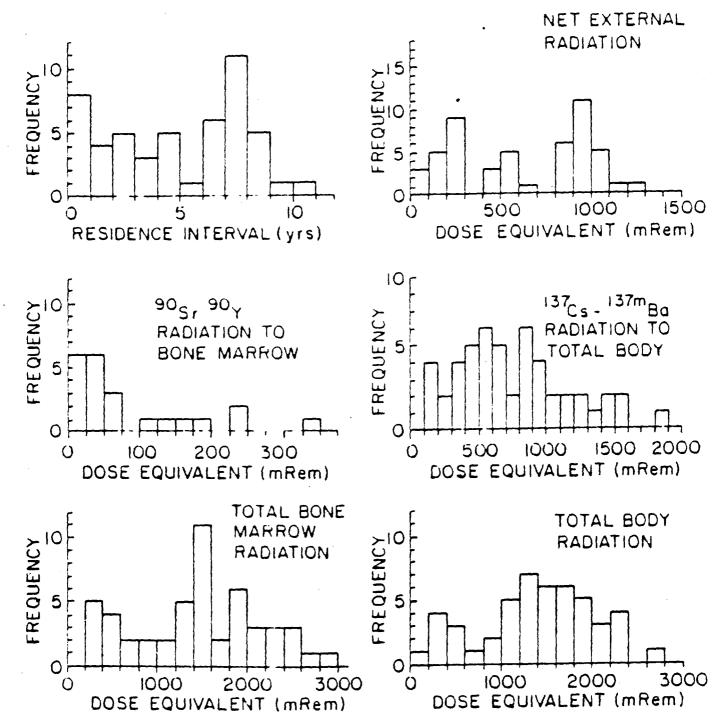


Fig. 2 TOTAL MALE DISTRIBUTION OF DOSE EQUIVALENT (DURING AND POST RESIDENCE) OR RESIDENCE INTERVAL FOR INHABITANTS OF BIKINI ISLAND, BIKINI ATOLL

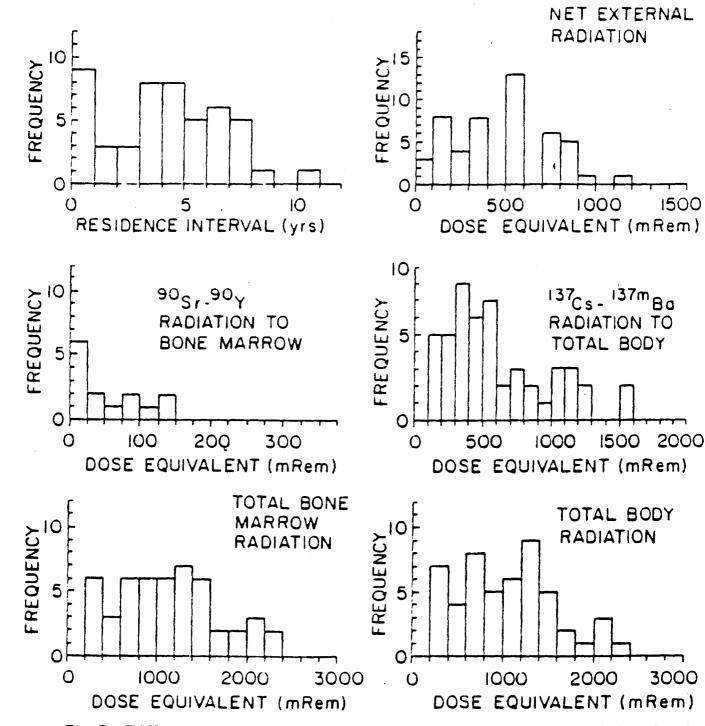


Fig. 3. TOTAL FEMALE DISTRIBUTION OF DOSE EQUIVALENT (DURING AND POST RESIDENCE) OR RESIDENCE INTERVAL FOR INHABITANTS OF BIKINI ISLAND, BIKINI ATOLL