


## LEGAL NOTICE

and all some some and all all and some states the state of the last bas Die times with a back is and it and de

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in the United States of America Available from Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U. S. Department of Commerce Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.65

Frequencies ARCENTES



Joseph Rivera suffered a heart attack and died on January 31, 1970. We are greatly saddened by the loss of our good friend and colleague. Soon after joining the Health and Safety Laboratory in 1960, Joe helped to implement the human diet and bone studies at HASL. He continued to pursue these and other investigations with the basic aim of estimating the exposure of man from radioactive fallout.

His strong interest in and involvement with the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Committee on Radiation Protection and Measurements, and the Federal Radiation Council, exposed his scientific skills as well as his good humor to scientists from many areas of the world.

Joe was co-editor of the HASL "Quarterly". His advice and many contributions will be sorely missed. He was an independent thinker whose ideas and talents were sought in almost every endeavor at HASL.

### HASL-224

UC-41, Health and Safety TID-4500, 54th Ed.

## HEALTH AND SAFETY LABORATORY

## FALLOUT PROGRAM QUARTERLY SUMMARY REPORT

(December 1, 1969 through March 1, 1970)

Prepared by

Edward P. Hardy, Jr.

Environmental Studies Division

Preceding reports in this series:

| Year | HASL Report Nos.   |
|------|--------------------|
| 1958 | 42, 51             |
| 1959 | 65                 |
| 1960 | 77, 84, 88, 95     |
| 1961 | 105, 111, 113, 115 |
| 1962 | 117, 122, 127, 131 |
| 1963 | 132, 135, 138, 140 |
| 1964 | 142, 144, 146, 149 |
| 1965 | 155, 158, 161, 164 |
| 1966 | 165, 171, 172, 173 |
| 1967 | 174, 181, 182, 183 |
| 1968 | 184, 193, 197, 200 |
| 1969 | 204, 207, 210, 214 |
| 1970 | 2.1.7              |
|      |                    |

April 1, 1970

UNITED STATES ATOMIC ENERGY COMMISSION New York Operations Office

Marine Contractor

o se encontrar en j

NYOO Health and Safety

Desir Alter Setures

## FALLOUT PROGRAM QUARTERLY SUMMARY REPORT

April 1, 1970

#### ABSTRACT

This report presents current data from the HASL Fallout Program, the National Radiation Laboratory in New Zealand, the Department of Scientific and Industrial Research in New Zealand, The EURATOM Joint Nuclear Research Centre and The Radiological Physics Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes covering the following topics: radium-226 in diet, plutonium-239 anomaly in the troposphere, and the quality of radiochemical analyses in the HASL surface air sampling program. Subsequent sections include tabulations of radionuclide levels in stratospheric air, surface air, failout, milk, other diet components, and tap water. A bibliography of recent publications related to radionuclide studies is also presented.

- ii -

# Table of Contents

| Introduction                                                                                                                                                                        | Page                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Part I - Interpretive Reports and Notes                                                                                                                                             |                                      |
| Radium-226 in the Diet of Two U. S. Cities<br>by I. M. Fisenne and H. W. Keller, Health and Safety<br>Laboratory, USAEC                                                             | I-2                                  |
| The Quality of Radiochemical Analyses in the HASL<br>Surface Air Sampling Program during 1968<br><u>by</u> M. T. Kleinman and H. L. Volchok, Health and<br>Safety Laboratory, USAEC | I-9                                  |
| Plutonium-239 Anomaly in the Troposphere<br>by H. L. Volchok and P. W. Krey, Health and<br>Safety Laboratory, USAEC                                                                 | I-14                                 |
| Part II - <u>HASL Fallout Program Data</u>                                                                                                                                          | 11-2 <sub>°</sub> 3                  |
| l. Fallout Deposition                                                                                                                                                               |                                      |
| 1.12 Other Isotopes at Selected Sites                                                                                                                                               | Appendix A<br>II-2 and<br>Appendix C |
| 1.2 Sr $^{90}$ and Sr $^{89}$ at Atlantic Ocean Weather                                                                                                                             | Appendix B                           |
| 2. Radionuclides in Surface Air                                                                                                                                                     | Appendix D                           |
| 3. Project Airstream                                                                                                                                                                | II-9                                 |
| •<br>4. High Altitude Balloon Sampling Program                                                                                                                                      | II-68                                |
| 5. Radiostrontium in Milk and Tap Water                                                                                                                                             | Appendix E                           |
| 6. Sr <sup>90</sup> in Diets                                                                                                                                                        | II-4                                 |
| 7. UNSCEAR-WHO Bone Program                                                                                                                                                         | II-7                                 |

1

- iii -

|          | Table of Contents - Cont'd                                                                                                                                        | Page                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Part I   | II - Data from Sources Other than HASL                                                                                                                            | III - l                                                |
| 1.       | Christchurch, New Zealand<br>Environmental Radioactivity in New Zealand<br>Quarterly Report for April - June 1969:                                                |                                                        |
|          | NRL - F35<br>Quarterly Report for July - September 1969;<br>NRL - F36                                                                                             | III - 2<br>III - 14                                    |
| 2,       | Department of Scientific and Industrial Research,<br>The Institute of Nuclear Sciences, Lower Hutt,                                                               |                                                        |
|          | New Zealand<br>Radioisotopes in Rainwater                                                                                                                         | III - 24                                               |
|          | January - April 1968                                                                                                                                              | . III - 25                                             |
|          | May - August 1968                                                                                                                                                 | III - 26                                               |
|          | September - December 1968                                                                                                                                         | III - 27                                               |
| 3.       | Radiological Physics Division, Argonne National<br>Laboratory<br>Cesium-137 in Various Chicago Foods (Coll. Month<br>January 1970) by S. S. Brar and D. M. Nelson | III - 28                                               |
| 4.       | EURATOM Joint Nuclear Research Centre<br>Ispra Establishment, Protection Service<br>Site Survey and Meteorology Section, Quarterly<br>Report                      | III - 32                                               |
| Part I   | V - <u>Recent Publications Related to Radionuclide</u><br><u>Studies</u>                                                                                          | IV - 1                                                 |
| Append   | ix                                                                                                                                                                |                                                        |
| Α.       | Sr <sup>90</sup> and Sr <sup>89</sup> in Monthly Deposition at World Land                                                                                         | נת                                                     |
| Β.       | Sites<br>Radiostrontium Deposition at Atlantic Ocean                                                                                                              | A - 1                                                  |
| 0        | Weather Stations                                                                                                                                                  | B - 1                                                  |
| с.<br>D. | Plutonium Isotopes at Selected Sites<br>Radionuclides in Surface Air                                                                                              | C - 1<br>D - 1                                         |
| D.<br>Е. | Radiostrontium in Milk and Tap Water                                                                                                                              | L = 1<br>E = 1                                         |
| E.<br>F. | Table of Conversion Factors                                                                                                                                       | E - I<br>F - I                                         |
| G.       | Table of Radionuclides                                                                                                                                            | $\mathbf{F} = \mathbf{I}$<br>$\mathbf{G} = \mathbf{I}$ |
|          |                                                                                                                                                                   |                                                        |

. . .

•

,

•

- iv -

÷

and an appression a stick are sone water and this with the in which a when a with the state the state of the

# List of Tables Part II HASL Fallout Program

# Table

k.

l.

n.

Ο,

Cerium-141

Cerium-144

Plutonium-239

Stable lead

m. Plutonium-238

п

п

0

11

11

4

4

5 6 7

8

52

## Page

# Fallout Deposition

| 可約書                   |      | <u>rurrouc</u>                                      | Depositeion  |         |         |          |               |
|-----------------------|------|-----------------------------------------------------|--------------|---------|---------|----------|---------------|
|                       | l.a. | Sr <sup>90</sup> and Sr <sup>89</sup><br>Land Sites | in Monthly   | Depos   | ition   | at World | Appendix A-4  |
| and the second second | b.   | Radiostrontiu<br>Stations                           |              |         |         |          |               |
| ÷.                    |      | В                                                   | RAVO         |         |         |          | Appendix B-3  |
|                       |      | C                                                   | HARLIE       |         |         |          | Appendix B-5  |
| Î.                    |      | D                                                   | ELTA         |         |         |          | Appendix B-7  |
| . UT                  |      | E                                                   | СНО          |         |         |          | Appendix B-9  |
|                       | c.   | Plutonium Iso                                       | topes in Mo  | nthly 1 | Precip  | itation: |               |
|                       |      |                                                     | ew York Cit  |         | -       |          | Appendix C-3  |
|                       |      | W                                                   | estwood      |         |         |          | Appendix C-4  |
|                       |      | S                                                   | eattle       |         |         |          | Appendix C-5  |
|                       |      | Н                                                   | onolulu      |         |         |          | Appendix C-6  |
|                       |      | M                                                   | elbourne     |         |         |          | Appendix C-7  |
|                       |      | S                                                   | alisbury     |         |         |          | Appendix C-8  |
|                       |      |                                                     | urban        |         |         |          | Appendix C-9  |
|                       |      | R                                                   | io de Janei  | ro      |         |          | Appendix C-10 |
| •                     |      | Surface 2                                           | Air          |         |         |          |               |
|                       | 2.a, | HASL Surface A                                      |              |         |         |          | Appendix D-7  |
|                       | b,   | Gross Gamma Co                                      | oncentration | ns in S | Surface | e Air    | Appendix D-9  |
|                       | C,   | Manganese-54                                        | 80           |         | 18      |          | Appendix D-16 |
| Î                     | d.   | Iron-55                                             |              | н       | 11      | 80       | Appendix D-20 |
|                       | e.   | Strontium-89                                        |              |         |         | 81       | Appendix D-25 |
| Ì                     | f.   | Strontium-90                                        | 11           |         |         | II.      | Appendix D-31 |
|                       | g.   | Zireonium-95                                        |              | 11      | U II    | 1)       | Appendix D-38 |
|                       | h.   | Cadmium-109                                         | 11           | 1Ì      | 11      | 11       | Appendix D-45 |
|                       |      | Cesium-137                                          | 11           | .,      | 14      | 10       | Appendix D-49 |
|                       | j.   | Barium-140                                          | 11           | 11      | 11      | 14       | Appendix D-55 |
| - 1                   | 7-   | <b>O</b>                                            |              |         |         |          |               |

- v -

п

н

...

11

11

н

н

11

п

н

11

11

н

11

11

Appendix D-56

Appendix D-60

Appendix D-67

Appendix D-72

Appendix D-77

## List of Tables - Cont'd Part II HASL Fallout Program

#### Table

## Project Airstream

3.a. Corrected Radiochemical Analysis of April 1969 Composites II-19
b. Radiochemical Analyses of July 1969 Composites II-23
c. Total Gamma and Zr-95 Concentrations in October 1969 II-35

d. Quality Control Results

## High Altitude Balloon Sampling Program

4. Stratospheric Radionuclide Concentrations: Balloon II-69 Samples Collected During September and October 1968 at San Angelo

#### Milk and Tap Water

| 5.a. | The Sr <sup>90</sup> to Ca Ratio in New York City Liquid Milk              | Appendix | E-3 |
|------|----------------------------------------------------------------------------|----------|-----|
| b.   | The Sr <sup>90</sup> to Ca Ratio in Perry, N. Y. Powdered                  | .1       | E-4 |
|      | Milk                                                                       |          |     |
|      | Sr <sup>90</sup> in New York City Tap Water                                | 53       | E-6 |
| d,   | The Cs <sup>137</sup> to Sr <sup>90</sup> Ratio in New York City Tap Water | ¥ C      | E-7 |

## Diets

6. Sr<sup>90</sup> in New York City and San Francisco Diets: II-5 Fourth Quarter

#### <u>Bone</u>

7. 1969 Human Bone from the W.H.O. II-8

Page

II-67

# List of Figure

## Part II

## HASL Fallout Program

# Figure

2

E-3 E-4

E-6 E-7 Page

THY ALL THE

- Alt I was a sub-

in Andrews

# Fallout Deposition

| 1.a. | HASL Monthly Fallout Sampling Network        | Appendix | A-2 |
|------|----------------------------------------------|----------|-----|
| b.   | Monthly Deposition of Sr-90 in New York City | 00       | A-3 |

## Project Airstream

| 3.a. | Project Airstream Flight Trajectory | II-17 |
|------|-------------------------------------|-------|
| b.   | Project Airstream Altitude Coverage | II-18 |

# Milk and Tap Water

| 5,a, | Sr <sup>90</sup> in Powd | lered Whole | Milk -    | Perry N. Y. | Appendix  | E-5 |
|------|--------------------------|-------------|-----------|-------------|-----------|-----|
| b.   | Sr <sup>90</sup> in Liqu | id Whole M  | ilk - New | York City   | ente allo | E5  |
| C.   | Sr <sup>90</sup> in New  | York City   | Tap Water | -           | 6 9       | E8  |

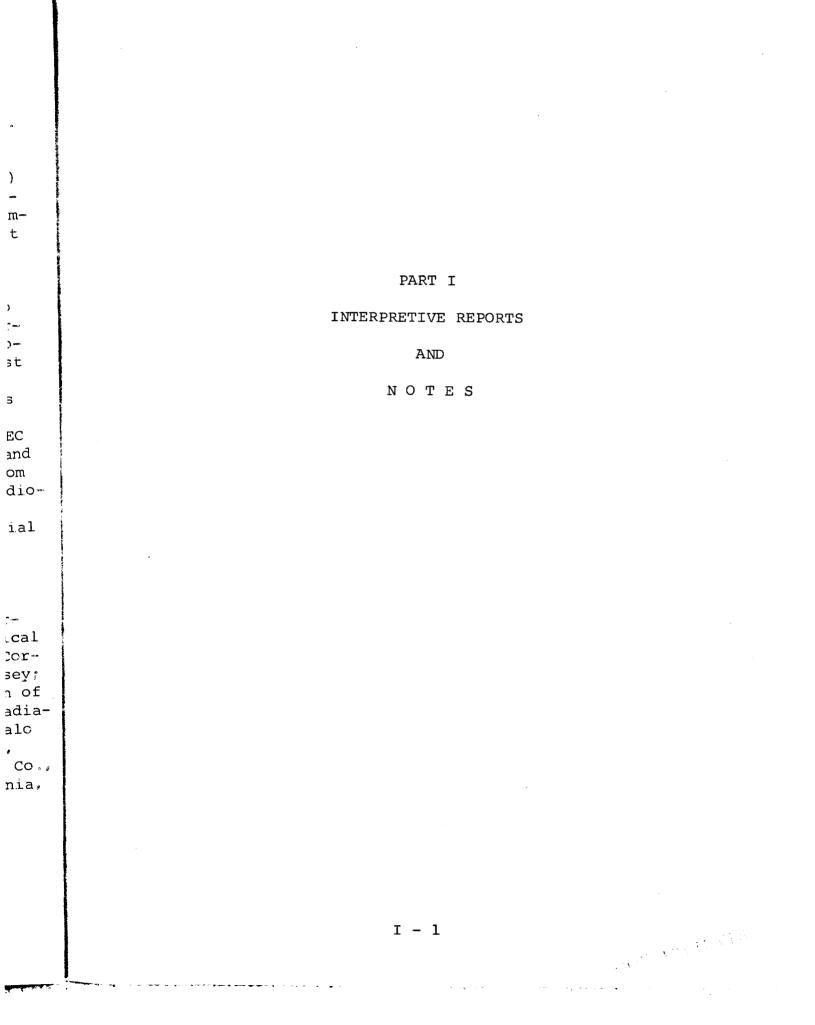
# <u>Diets</u>

6. Daily Intakes of Sr<sup>90</sup>

- vii -

### INTRODUCTION

Every three months, the Health and Safety Laboratory issues a report summarizing current information obtained at HASL pertaining to fallout. This report, the latest in the series, contains information that became available during the period from December 1, 1969 to March 1, 1970. The next report is scheduled for publication July 1, 1970. Preceding reports in the series, starting with HASL-42, "Environmental Contamination from Weapons Tests", and continuing through HASL-224, (this report) may be purchased from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia 22151. A complete listing of these Fallout Program Quarterly Summary Reports is given on the title page of this report.


To give a more complete picture of the current fallout situation and to provide a medium for rapid publication of radionuclide data, these quarterly reports often contain information from other laboratories and programs, some of which are not part of the general AEC program. To assist in developing, as rapidly as possible, provisional interpretations of the data, special interpretive reports and notes prepared by scientists working in the field of fallout are also included from time to time. Many of these scientists are associated in some way with the general AEC program. Information developed outside of HASL is identified as such and is gratefully acknowledged by the Laboratory. In this report, data from the EURATOM Joint Nuclear Research Center at Ispra, the Division of Radiological Physics at Argonne National Laboratory, the National Radiation Laboratory in New Zealand and the Department of Scientific and Industrial Research in New Zealand, are given.

A portion of the radiochemical analyses either have been or are being carried out by commercial laboratories under contract to the HASL Environmental Studies Division. The results of these analyses are reported as part of HASL's regular fallout program. The contractor analytical laboratories which provided data are Nuclear Science and Engineering Corporation, Pittsburgh, Pennsylvania; Isotopes, Inc., Westwood, New Jersey; Radiochemistry Incorporated, Louisville, Kentucky; Tracerlab, Division of LFE, Richmond, California (now Trapelo Division/West); Controls for Radiation, Inc., Cambridge, Mass.; Hazleton-Nuclear Science Corporation, Palc Alto, Calif.; Food, Chemical and Research Laboratories, Inc., Seattle, Washington; Tracerlab, Division of LFE, Waltham, Mass; U. S. Testing Co., Inc., Richland, Washington, Custom Nuclear Co., Mountainview, California, and Ledoux and Co., Teaneck, New Jersey.

This report is divided into four main parts:

- Interpretive Reports and Notes 1.
- 2. HASL Fallout Program Data
- 3. Data from Sources Other than HASL
- 4. Recent Publications Related to Radionuclide Studies boy. Constraint

- viii -



#### RADIUM-226 IN THE DIET OF TWO U. S. CITIES

I. M. Fisenne and H. W. Keller

A revised estimate of the daily radium-226 dietary intake in three cities (New York City, Chicago and San Francisco) was reported in April 1969.<sup>(1)</sup> At that time, a comparison of the 1960 and 1966 diet estimates showed that the 1966 values were from 27% to 50% lower than the 1960 values. This difference was due to the change in the analytical procedure for radium-226. To obtain a more representative estimate of dietary intake, a second food sampling from the New York City and San Francisco was analyzed for radium-226. No Chicago diet samples were available for analyses, since food sampling from this city was terminated in 1968. Samples of New York City and San Francisco area tap water were also analyzed for radium-226.

The HASL food sampling program is described in HASL-200.<sup>(2)</sup> The tap water samples from New York City represent an integrated one month collection. The San Francisco area tap water sample was collected on a single day.

The radium-226 diet level estimates are shown in Tables 1 and 2. Duplicate sample analyses are also listed. The yearly consumption figures are taken from a U. S. Department of Agriculture report.<sup>(3)</sup> The average daily intake of radium-226 in the two cities may be computed from these data.

- 2

en te Mattin dan

New York CitySan Francisco1.7 pCi/day0.8 pCi/day

These values do not include the contribution of radium-226 from tap water. However, the radium-226 content of the water is low and would not materially increase the daily intake estimate.

| <u>New York City</u> | San Francisco   |
|----------------------|-----------------|
| 0.011 pCi/liter      | 0.015 pCi/liter |

Comparison of the two surveys in Tables 1 and 2 shows that although individual food types may vary by more than a factor of 2, the average daily intake for each city varies by less than 20% or within expected experimental error. It should also be noted that both the 1966 and 1968 food samplings were collected at mid-year so that possible seasonal variation was not studied. It seems unlikely that a significant seasonal variation in dietary radium-226 would exist for a given location.

The California State Department of Health has estimated the daily radium-226 intake of individuals receiving a hospital diet. The average daily radium-226 intake for Berkeley, California hospital diets from November 1967 to June 1968 was 0.4 pCi/day.<sup>(4)</sup> Similar diets collected from April to December 1968 in San Francisco averaged 1.3 pCi/day. (5,6,7)

The radium-226 content of human bone from New York City and San Francisco is 0.036 pCi/g Ca and 0.031 pCi/g Ca, respectively, Since the dietary radium-226 levels for these cities are different by about a factor of two, it would be expected that the bone levels would reflect this difference. We suggest that a particular dietary component or a combination of a few components may control the radium-226 level in man. Little is known about the availability of radium-226 from foodstuffs, but there is indication that it is quite variable. We are initiating a few studies to attempt to correlate radium-226 bone levels with particular Part 16 Warry dietary components. I - 3

| ΤÆ | B | LE | 1 |
|----|---|----|---|
|    |   |    |   |

•

0

| Radium-226 | in  | New | York | City  | Diet |
|------------|-----|-----|------|-------|------|
| Radium-220 | 111 | New | TOTE | Orej. |      |

|                      |     |            | 19        | 66        | 19             | 68         | Aver      |           |
|----------------------|-----|------------|-----------|-----------|----------------|------------|-----------|-----------|
| Diet Category        | kg  | g Ca<br>yr | pCi<br>kg | pCi<br>yr | pCi<br>kg      | pCi<br>yr  | pCi<br>kg | pCi<br>yr |
| Dairy Products       | 200 | 216.0      | 0.25      | 50        | 0.30*<br>0.19* | 60<br>38   | 0.25      | 50†       |
| Fresh Vegetables     | 48  | 18.7       | 0.50      | 24        | 1.6<br>1.6     | 77<br>77   | 1.1       | 53        |
| Canned Vegetables    | 22  | 4•4        | 0.65      | 14        | 0.68           | 15         | 0.67      | 15        |
| Root Vegetables      | 10  | 3.8        | 1.4       | 14        | 1.2            | 12         | 1.3       | 13        |
| Potatoes             | 38  | 3.8        | 2.8       | 106       | 1.7            | 65         | 2.3       | 87        |
| Dry Beans            | 3   | 2.1        | 1.1       | 3.3       | 0.98           | 2.9        | 1.0       | 3         |
| Fresh Fruit          | 59  | 9.4        | 0.43      | 25        | 0.20           | 12         | 0.32      | 19        |
| Canned Fruit         | 11  | 0.6        | 0.17      | 1.9       | 0.15<br>0.16   | 1.7<br>1.8 | 0.16      | 1.8       |
| Fruit Juice          | 28  | 2.5        | 0.42      | 12        | 0.90           | 25         | 0.66      | 18        |
| Bakery Products      | 44  | 53.7       | 2.8       | 123       | 1.7            | 75         | 2.3       | 101       |
| Flour                | 34  | 6.5        | 1.9       | 65        | 2.3            | 78         | 2.1       | 71        |
| Whole Grain Products | 11  | 10.3       | 2.2       | 24        | 2.7            | 30         | 2.5       | 28        |
| Macaroni             | 3   | 0.6        | 2.1       | 6.3       | 1.4            | 4.2        | 1.8       | 5.4       |
| Rice                 | 3   | 1.1        | 0.76      | 2.3       | 3.3            | 9.9        | 2.0       | 60        |

۲-1 ۱

4

1.

· · · ·

. . .

1.

| TA | BI | Æ | 1 |
|----|----|---|---|
|    |    |   |   |

|                                                                                             | 1        |            | 196       |              | The second s | 68           |           | erage        |
|---------------------------------------------------------------------------------------------|----------|------------|-----------|--------------|----------------------------------------------------------------------------------------------------------------|--------------|-----------|--------------|
| Diet Category                                                                               | kg<br>yr | g Ca<br>yr | pCi<br>kg | pCi<br>yr    | pCi<br>kg                                                                                                      | pCi<br>yr    | pCi<br>kg | pCi<br>yr    |
| Meat                                                                                        | 79       | 12.6       | 0.01      | 0.8          | 0.02                                                                                                           | 1.6          | 0.02      | 1.6          |
| Poultry                                                                                     | 20       | 6.0        | 0.76      | 15           | 0.10<br>0.11                                                                                                   | 2.0          | 0.44      | 8.8          |
| Eggs                                                                                        | 15       | 8.7        | 6.1       | 92           | 14<br>14                                                                                                       | 210<br>210   | 10        | 150          |
| Fresh Fish                                                                                  | 8        | 7.6        | 0.67      | 5.4          | 1.1                                                                                                            | 8.8          | 0.89      | 7.1          |
| Shellfish                                                                                   | • . 1    | 1.6        | 0.80      | 0.8          | 0.90                                                                                                           | 0.9          | 0.85      | 0.9          |
| Yearly Intake<br>Daily Intake pCi/g Ca<br>*Two different samples<br>†Average of three sampl | les      | 370        |           | 584.8<br>1.6 |                                                                                                                | 680.2<br>1.8 |           | 639.6<br>1.7 |

н 1 5 Radium-226 in New York City Diet

# TABLE 2

.0

. .

•

ł

.

# Radium-226 in San Francisco Diet

|                      |          |            | 196       | 1966      |               | 1968       |           | Average   |  |
|----------------------|----------|------------|-----------|-----------|---------------|------------|-----------|-----------|--|
| Diet Category        | kg<br>yr | g Ca<br>yr | pCi<br>kg | pCi<br>yr | pCi<br>kg     | pCi<br>yr  | pCi<br>kg | pCi<br>yr |  |
| Dairy Products       | 200      | 216.0      | 0.10      | 20        | 0.09<br>0.08  | 18<br>16   | 0.09      | 18        |  |
| Fresh Vegetables     | 48       | 18.7       | 0.48      | 23        | 0.80<br>0.88  | 38<br>42   | 0.66      | 32        |  |
| Canned Vegetables    | 22       | 4.4        | 0.35      | 7.7       | 0 <b>.3</b> 6 | 7.9        | 0.36      | 7.9       |  |
| Root Vegetables      | 10       | 3.8        | 1.2       | 12        | 1.5           | 15         | 1.4       | 14        |  |
| Potatoes             | 38       | 3.8        | 0.14      | 5.3       | 0.33          | 13         | 0.24      | 9.1       |  |
| Dry Beans            | 3        | 2.1        | 0.72      | 2.2       | 0.67          | 2.0        | 0.70      | 2.1       |  |
| Fresh Fruit          | 59       | 9.4        | 0.25      | 15        | 0.27          | 16         | 0.26      | 15        |  |
| Canned Fruit         | 11       | 0.6        | 0.70      | 7.7       | 0.16<br>0.19  | 1.8<br>2.1 | 0.44      | 4.8       |  |
| Fruit Juice          | 28       | 2.5        | 0.33      | 9.2       | 0.79          | 22         | 0.56      | 16        |  |
| Bakery Products      | 44       | 53.7       | 1.2       | 53        | 1.6           | 70         | 1.4       | 62        |  |
| Flour                | 34       | 6.5        | 1.4       | 48        | 1.4           | 48         | 1.4       | 48        |  |
| Whole Grain Products | 11       | 10.3       | 2.1       | 23        | 2.2           | 24         | 2.2       | 24        |  |
| Macaroni             | 3        | 0.6        | 2.6       | 7.8       | 1.7           | 5.1        | 2.2       | 6.6       |  |
| Rice                 | 3        | 1.1        | 0.24      | 0.7       | 0.33          | 1.0        | 0.29      | 0.9       |  |
| Meat                 | 79       | 12.6       | 0.01      | 0.8       | 0.02          | 1.6        | 0.02      | 1.6       |  |
|                      |          |            |           |           |               |            |           |           |  |

H -

σ

••

4

- - - -

.

100

# TABLE 2

|                                        |          | •          | 190       | the second s | 196       |       | Ave           |               |
|----------------------------------------|----------|------------|-----------|----------------------------------------------------------------------------------------------------------------|-----------|-------|---------------|---------------|
| Diet Category                          | kg<br>yr | g Ca<br>yr | pCi<br>kg | pCi<br>yr                                                                                                      | pCi<br>kg | pCiyr | pCi<br>kg     | pCi<br>yr     |
| Poultry                                | 20       | 6.0        | 0.43      | 8.6                                                                                                            | 0.38      | 7.6   | 0.41          | 8.2           |
| Eggs                                   | 15       | 8.7        | 2.0       | 30                                                                                                             | 1.5       | 23    | 1.8           | 27            |
| Fresh Fish                             | 8        | 7.6        | 0.40      | 3.2                                                                                                            | 0.11      | 0.9   | 0.26          | 2.1           |
| <b>S</b> hellfish                      | 1        | 1.6        | 1.9       | 1.9                                                                                                            | 1.1       | 1.1   | 1.5           | 1.5           |
| Yearly Intake<br>Daily Intake pCi/g Ca |          | 370        |           | 279.1<br>0.75                                                                                                  |           |       | 317.2<br>0.86 | 300.8<br>0.81 |

# Radium-226 in San Francisco Diet

مسیم مدین ایر ا ایر ا ایر ا

#### REFERENCES

- (1) Fisenne, I. M. and Keller, H. W. Radium-226 in the Diet in Three United States Cities USAEC Report HASL-207, April (1969), p. 1-2
- (2) Rivera, J. HASL Diet Studies; First and Second Quarters of 1968 USAEC Report HASL-200, October (1968), p. II-6
- (3) Food Consumption of Househouseholds in the United States Spring 1968
   A Preliminary Report, U. S. D. A. ARS 62-16, August (1967)
- (4) State of California Department of Public Health, Bureau of Radiological Health Estimated Daily Intake of Radionuclides in California Diets, November - December 1967 and January - September 1968 USDHEW, PHS, Radiological Health Data and Reports, Vol. 10, No. 5, May (1969), p. 208-211
- (5) State of California Department of Public Health, Bureau of Community Environment Management Radionuclides in Institutional Diet Samples April - June 1968 USDHEW, PHS, Radiological Health Data and Reports, Vol. 10, No. 1, January (1969), p. 22-25

Į

- (6) State of California Department of Public Health Bureau of Radiological Health and Bureau of Community Environmental Management Radionuclides in Institutional Diet Samples, July - September 1968 USDHEW, PHS, Radiological Health Data and Reports, Vol. 10, No. 4, April (1969), p. 150-152
- (7) State of California Department of Public Health, Bureau of Radiological Health and Bureau of Community Environmental Management Radionuclides in Institutional Diet Samples, October - December 1968 USDHEW, PHS, Radiological Health Data and Reports, Vol. 10, No. 7, July (1969), p. 308-311

I - 8

All of the values reported by the contractor are corrected for a reagent blank, so that the blank values reported here reflect the contamination of the filter material both during manufacture and during handling at HASL and at the contractor laboratory.

Table 1 lists the results of the analyses of the blanks for each nuclide. In general these data indicate low levels of contamination for most of the nuclides, however it is significant to note that the average Pu-238 blank rose from 0.04 dpm in 1967 to 0.22 dpm in 1968. Because the amount of Pu-238 found in surface air samples is frequently in the range of 1 dpm this blank may represent a significant fraction of the total activity.

The results of analyses on standard samples are shown in Table 2. These data are indicative of the accuracy of the radiochemical analyses. The values shown are the average percent deviations between the added activities and the results reported by the contractor. Although most of the results are satisfactory, there appears to be a large positive bias in the Pu-238 values for much of 1968, which cannot be accounted for by the increase of the blank contamination. Samples submitted to the contractor during 1969 which were prepared with a new standard solution do not exhibit this bias, and it is therefore probable that the poor results reflect a degeneration of the Pu-238 standard solution used for the preparation of the 1968 guality control samples.

I - 10

Lug. Burger

All of the values reported by the contractor are corrected for a reagent blank, so that the blank values reported here reflect the contamination of the filter material both during manufacture and during handling at HASL and at the contractor laboratory.

Table 1 lists the results of the analyses of the blanks for each nuclide. In general these data indicate low levels of contamination for most of the nuclides, however it is significant to note that the average Pu-238 blank rose from 0.04 dpm in 1967 to 0.22 dpm in 1968. Because the amount of Pu-238 found in surface air samples is frequently in the range of 1 dpm this blank may represent a significant fraction of the total activity.

The results of analyses on standard samples are shown in Table 2. These data are indicative of the accuracy of the radiochemical analyses. The values shown are the average percent deviations between the added activities and the results reported by the contractor. Although most of the results are satisfactory, there appears to be a large positive bias in the Pu-238 values for much of 1968, which cannot be accounted for by the increase of the blank contamination. Samples submitted to the contractor during 1969 which were prepared with a new standard solution do not exhibit this bias, and it is therefore probable that the poor results reflect a degeneration of the Pu-238 standard solution used for the preparation of the 1968 guality control samples.

I - 10

THE SUCCESSION

#### REFERENCES

- (1) Volchok, H. L. The HASL Surface Air Sampling Program, Summary Report for 1963 USAEC Report HASL-156, January (1965)
- (2) Volchok, H. L. and Kleinman, M. T. Radionuclides and Lead in Surface Air USAEC Report HASL-224, April (1970), pp D-1 - D-80
- (3) Volchok, H. L. and Kleinman, M. T. Sr-90 in Surface Air; 1963-1967 USAEC Report HASL-204, January (1969), pp I-17 - I-27
- (4) Volchok, H. L. and Kleinman, M. T. The Quality of Radiochemical Analyses in the HASL Surface Air Sampling Program, 1963-1967
   USAEC Report HASL-204, January (1969), pp I-28 - I-46

e de la constance de la constan La constance de la constance de

## Table l

# Quality Control Results - Blanks - 1968

(Values in dpm/sample ± 1 std. Deviation)

|                  | Fe-55  | Sr-89         | Sr-90       | Zr-95     | Cs-137  | Ce-141 | Ce-144           | Pu-238          | Pu-239  | Stable Pb |
|------------------|--------|---------------|-------------|-----------|---------|--------|------------------|-----------------|---------|-----------|
| January          | 42±67  | 7.5±4.6       | 0±.5        | 2.5±4.9   | ·       | 13±73  | 1.5±3.4          | .34±.05         | .04±.02 |           |
| Februar <b>y</b> | 24±59  |               | 0.5±1.5     | 3.0±6.0   |         |        | 2.0±3.0          | L               | L       |           |
| March            | 62±137 |               | 23.8±12.4   | 0±6.4     |         |        | 6.7±4.1          | <b>.1</b> 8±.01 | .09±.03 |           |
| April            | 0±156  |               | 0±.03       | 1.4±13    |         |        | 5.4±2.5          | 0±.04           | 0±.03   |           |
| Мау              | 0±86   |               | 0±1.1       | 0±8.8     |         |        | 0±3.3            | .29±.05         | .03±.02 |           |
| June             | 96±72  |               | 1.6±4.3     | 3.1±6.1   |         |        | 0±1.9            | .37±.05         | 0 ± .03 |           |
| July             |        | 7.1±20.1      | 0.5±1.3     | 0.9±7.2   | 0.2±0.4 |        | 2.1±2.8          | .36±11          | .12±.10 |           |
| August           |        | 0±2.3         | 0.5±0.4     | 9.3±4.4   | 0.7±4.0 |        | 2.0±1.6          | .29±.07         | .05±.05 |           |
| September        |        | <b>0</b> ±1.5 | $0 \pm 0.4$ | 2.8±3.0   | 1.5±0.5 |        | 1.6±1.6          | .41±.06         | 0 ±.03  |           |
| October          |        |               | 0 ± 2.3     |           | 5.2±0.7 |        | 3 <b>.0±</b> 6.6 | .11±.03         | 0 ±.02  | .03       |
| November         |        |               | 0.1±0.8     | 5.7±8.8   | 0.9±0.5 |        | 0.9±2.8          | .06±.03         | 0 ±.03  |           |
| December         |        |               | 0.9±3.2     | 13.5±16.1 | 0.1±0.5 |        | 229±270          | .11±.09         | 0 ±.07  | 0.0       |

. t

Ì

NOTE: L indicates sample lost

-- indicates no analysis

# Table 2

Quality Control Results - Standards-1968 (Average values in % Deviation)

|           | <u>Fe-55</u> | Sr-89    | <u>Sr-90</u>     | Zr-95 | <u>Cs-137</u> | <u>Ce-144</u> | <u>Pu-238</u> | Pu-239 | Stable<br><u>Pb</u> |
|-----------|--------------|----------|------------------|-------|---------------|---------------|---------------|--------|---------------------|
| January   | 12.5         | -12.5    | -4.0             | -13.0 |               | -2.0          | -8.5          | -3,5   |                     |
| February  | 18.0         |          | -16.0            | -19.5 |               | -1.5          | 17.0          | 3.0    |                     |
| March     | 21.5         |          | -1.0             | -21.0 |               | -3.0          | 15.5          | 0.5    |                     |
| April     | 5.5          |          | -5.5             | -13.5 |               | 0.5           | 16.0          | -0.5   | -1600 anna          |
| Мау       | -5.0         |          | -22.0            | -22.0 |               | 2.5           | 9.5           | 1.0    |                     |
| June      | 13.0         |          | -9.0             | -16.0 |               | 3.5           | 10.0          | 1.0    |                     |
| July      |              |          | 1.0              | -6.0  | 11.0          | 10.0          | 10.0          | 1.0    |                     |
| August    |              | 66.5     | -13.5            | -6.0  | -5.0          | -2.0          | 29.0          | -3.5   |                     |
| September |              | -11.5    | <del>-</del> 6.5 | -7.0  | -8.0          | 2.0           | 9.0           | 0.5    |                     |
| October   |              |          | -3.5             |       | -6.0          | 1.0           | 26.5          | 2.0    | 11.3                |
| November  |              | <b> </b> | -1.5             | -11,5 | -             | 8.0           | 39.0          | 6.1    | 27.0                |
| December  | ca <b>a</b>  |          | -5.0             | -14.8 | 1.0           | 4.5           | 35.0          | 3.9    | 2.7                 |

NOTE: -- indicates no analysis.

## Plutonium-239 Anomaly in the Troposphere

by H. L. Volchok, (HASL) P. W. Krey, (HASL)

During the period mid-1968 through mid-1969, some unusual behavior of Pu-239 relative to Sr-90 has been observed in surface air. For many months and at many surface air sampling stations in the Northern Hemisphere, the ratio Pu-239/Sr-90 exceeded all values in the stratosphere at comparable times. Although a number of possibilities are discussed in this paper, this apparent enrichment of Pu-239 is not readily explainable.

Most of the Pu-239 existing in the world came about by the interaction of enormous neutron fluxes in atomic explosions with the U-238 present in such devices (1,2) or from unfissioned Pu-239 from the cores of the weapons. Much smaller amounts may have been released to the environment by a variety of accidents and incidents on the earth's surface such as airplane crashes at Thule, Greenland, and Palomares, Spain (3) or the recently publicized contamination in the neighborhood of Rocky Flats, Colorado (4). Sr-90 on the other hand has been released to the atmosphere mainly in nuclear explosions as a product of the fission reaction. Since the major production modes of these two radionuclides are very different, their distribution in the stratosphere and surface air have been studied for some time.

#### Stratospheric Data

The Pu-239/Sr-90 ratios at 19.2 km and just above the tropopause are illustrated in Figures 1 and 2 for the period August 1967 through April 1969. These figures were constructed from data obtained in Project Airstream (5,6,7,8) and represent the minimum and maximum altitudes routinely sampled in this program. Since the tropopause height varies with latitude, the altitudes in Figure 2 also vary as follows:

| Latitude                            | <u>Altitude</u> |
|-------------------------------------|-----------------|
| 75 <sup>0</sup> n-65 <sup>0</sup> n | 12.2 km         |
| 65 <sup>0</sup> n-36 <sup>0</sup> n | 13.7 km         |
| 36 <sup>0</sup> n-34 <sup>0</sup> S | 15.2 km         |
| 34 <sup>0</sup> s-51 <sup>0</sup> s | 13.7 km         |

Figure 1 shows that at the higher altitude, the Pu-239/Sr-90 was uniformly less than 2% in both hemispheres, until the debris from the 6th Chinese test of June 1967 was intercepted in the last quarter of the year. At this point the ratio rose to greater than 2 but less than 3% and essentially remained within this range through all of 1968. The contours suggest that this debris at 19.2 km crossed the equator into the Southern Hemisphere in the spring of 1968 and influenced the ratio to as far south as the Airstream sampling network extends, 51°S.

I - 15

Figure 1 further shows that the French thermonuclear tests in mid-1968 abruptly ended the influence of the 6th Chinese test debris in the Southern Hemisphere, plunging the ratio to below 1%. The Chinese 8th test in December of 1968 apparently generated a ratio of Pu-239/Sr-90 of about 2% since the pattern in the Northern Hemisphere was not markedly affected in early 1969.

The Pu-239/Sr-90 in the lower stratosphere, just above the tropopause, is illustrated in Figure 2, and exhibited a similar pattern with one striking difference. At this altitude the high ratios generated by small French tests in the Southern Hemisphere in mid-1967 are clearly seen. Most important to note, however, is that in the Northern Hemisphere the highest ratios observed in the entire period shown were greater than 2.5% but less than 3%, and in early 1969 virtually all of the data were below 2.5%. This observation holds true not only for the lowest stratosphere but also for altitudes as high as 19.2 km (Fig. 1).

#### Surface Air Data

The Pu-239/Sr-90 ratios in surface air for the period 1966 through mid-1969 are shown in Figure 3. This figure was derived from the data obtained in the Health and Safety Laboratory (HASL) Surface Air Sampling Program (9).

Since the onset of our surface air analyses for Pu-239, in late 1965 through the beginning of 1968, rarely did any sample from the Northern Hemisphere indicate a ratio in excess of 2.5%, and the few that did were always analytically suspect. This relative constancy of the ratio had been noted by other investigators in earlier studies of stratospheric samples (1). In the Southern Hemisphere, high ratios in surface air were seen closely following the small French Tests in 1966 and 1967. The peak ratios appear to be displaced poleward relative to the reported latitude of the Southern Hemisphere tests. Recognizing that some debris from these tests did enter the lower stratosphere and that these peaks prevailed throughout the spring of each year, we feel that the geographical and temporal extent of the highs are not unexpected.

As a result of the 6th Chinese test (June 1967) most of which was deposited in the stratosphere, the gradual rise in the Pu-239/Sr-90 in the Northern Hemisphere surface air from less than 2% in mid-1967 to almost 3% by mid 1968 was not surprising. Starting with June 1968, however, and persisting well into 1969, numerous samples were measured with ratios over 3% and a few even exceeded 4%. From Figures 1 and 2 it seems clear that ratios such as these could not be derived from the debris in the stratosphere without some fractionation of these two nuclides between the tropopause and the earth's surface.

I - 17

LANE MELLIN

#### Discussion

There are at least five possible explanations for the anomalously high Pu-239/Sr-90 ratios observed in surface air since mid-1968. These are as follows:

1. Systematic analytical bias. The possibility of a systematic error in the radiochemical analyses seems very remote because through the period of anomalous ratios, both the stratospheric and surface air samples were analyzed by a single contractor laboratory (Trapelo/West). The performance of the contractor during this period was monitoried by analysis of coded quality control samples and found to be excellent. Furthermore, the data are seen to be internally consistent, allowing for relatively smooth contouring.

2. Non-representative sampling. The representativeness of the samples in both the Airstream and Surface Air programs have always been considered adequate. The filter media, the particle size of the debris, the face velocities and the general conditions of sampling were all considered in design of the equipment in these programs. In this light, erratic bias in the samplers seems highly unlikely. In addition the continuing balance in the Sr-90 budget in

I - 18

A REAL PROPERTY OF THE REAL PR

all compartments of the earth's atmosphere and on its surface (10) suggests that the overall representativeness of the data is good.

3. Transport of debris from regions of higher ratio in either the troposphere or stratosphere. Figures 1, 2, and 3 clearly eliminate this possibility in that from mid-1968 there are no other data in either the stratosphere or surface air of either hemisphere with ratios as high as the anomalies under consideration. In view of our conclusion regarding the representativeness of the data, it appears that there are no hidden compartments or pockets in the atmosphere containing unexpected debris.

4. Tropospheric injections of Pu-239. A few major injections of Pu-239 in 1968 could theoretically have produced the high Pu-239/Sr-90 observed from mid year onward. The actual amount of "excess" Pu-239 in the surface air during the period of the anomaly, that is the amount not accountable as coming out of the stratosphere, was estimated by using average ratios and Sr-90 concentrations. It was found that 22% of the surface air ratio (on the average) was excess, which is equivalent to about 2 x  $10^{-5}$  dpm/m<sup>3</sup> of unaccountable Pu-239.

An upper and lower limit of the average monthly tropospheric
<u>D</u> inventory of the excess Pu-239 was then estimated from the above result, depending upon the assumed distribution with altitude. If the h excess assumed an altitude profile similar to that of stratospheric debris, an upper limit of 70 curies of excess Pu-239 in the troposphere was indicated. If the excess concentration is essentially constant to an elevation of 1000 meters, with nothing above, a lower limit of about 1 curie was obtained.

There were no reported atmospheric nuclear tests in the Northern Hemisphere from December 1967 to December 1968 (11); hence the mid-tolate-1968 anomalies cannot be explained as due to fresh debris. Other possible surface releases of Pu-239, such as airplane crashes with loss of nuclear material, leaks from processing plants or other similar sources cannot be evaluated with information presently available. However, since virtually all of the Pu-238 in surface air, in the period of the anomaly came out of the stratosphere (either from nuclear tests or from the burn-up of SNAP-9A) a sharp decrease in the ratio Pu-238/Pu-239 would have occurred in the event of significant tropospheric releases of Pu-239. As Figure 4 indicates, this sharp decline cannot be seen. Some decrease did occur in 1968, much of it reflecting fallout from

I - 20

NM AN HUNDA

China's 6th test in June 1967, but this did not closely match the Pu-239 increase either in magnitude or timing. Further, in the mid latitudes in 1968, and in all latitudes in 1969, increases in the Pu-238/Pu-239 occurred.

ιe

:

n

0-

er

∋ss

)W--

. of

239

Ľ

On balance, we do not feel that the data support major tropospheric injections of Pu-239 to account for the anomalous Pu-239/Sr-90 ratios in the Northern Hemisphere. There is, however, a good deal of evidence of global, or at least hemispheric distribution of material emanating from limited sources at the earth's surface. As examples: lead, identifiable as originating in urban environments has been found in both the Arctic and Antarctic (12); dust, derived from the arid regions of West Africa, has been traced westward across the Atlantic Ocean to Barbados (13); and pesticide residues found in organs of Antarctic fauna (14), also must have been transported in the troposphere many thousands of miles. Thus there is not sufficient evidence at this time to Tule out this possibility.

5. Fractionation in the troposphere. This fifth possible explanation for the observed anomalies in the Pu-239/Sr-90 ratios offers much to the imagination, but there is little if any real positive evidence. Negatively, it can be demonstrated from Figure 3, that this had never happened to any observable extent in the preceeding two years. Also, it seems reasonable to assume that if the surface

air is enriched in Pu-239 in this particular period, somewhere in the atmosphere or on the ground we should observe data showing depletion in that isotope. Fallout data do not support this idea. Although sparse (only two deposition sites in the Northern Hemisphere had samples routinely analyzed for Pu-239), the fallout results indicate tha: Pu-239/Sr-90 ratios in precipitation are about the same as in the surface air (9, 15, 16, 17, 18, 19, 20, 21, 22, 23). On the other hard it certainly would not be unreasonable to expect fractionation between two such chemically different elements as Pu and Sr. Furthermore, since their origins differ markedly, they may very likely enter the tropospheron particles of different size. We do not propose to speculate further on the possible mechanisms of fractionation; however, it does seem clear: that an acceptable case for fractionation of these radionuclides. cc::ld be presented.

## <u>Conclusions</u>

<u>D</u>.

h

а

]

€

The anomalous ratios of Pu-239/Sr-90 in Northern Hemisphere surface air in 1968-1969 remain unexplained. Neither of the most plausible explanations advanced in this report, tropospheric releases of Pu-239 and tropospheric fractionation of the radionuclides, have been experimentally substantiated. In fact both explanations seem to be contraindicated by other observations and data. Sampling and analysis for Pu-239 and Sr-90 will be continued in both the stratospheric and surface air programs, and other studies which may bear on this subject will be considered to help finally understand this paradox.

I - 22

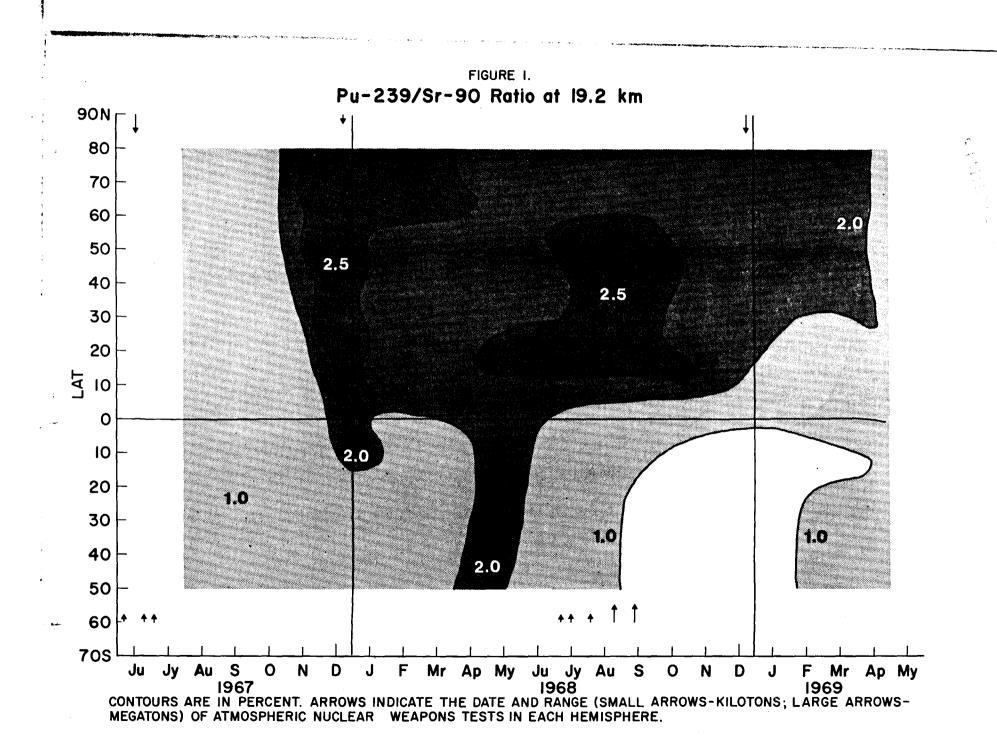
MOL MANN

REFERENCES on (1)Friend, J.P., H. W. Feely, P. W. Krey, J. Spar and Walton, A. The High Altitude Sampling Program am-Defense Atomic Support Agency - Report 1300 that: (2) Glasstone, S. The Effects of Nuclear Weapons sur-U. S. Government Printing Office, Washington, D.C. (1964) d it (3)SIPRI Yearbook of World Armaments and Disarmament 1968/69 two Humanities Press, New York 1970 е (4) Martell, E. A. Plutonium Contamination in the Denver Area sphere Press Release from the Colorado Committee for Environmental Information February 24, 1970 ther (5) Krey, P. W. clear Project Airstream USAEC Report HASL-197, July (1968) े:1d (6) Krey, P. W. Project Airstream USAEC Report HASL-204, January (1969) (7) Krey, P. W. Project Airstream USAEC Report HASL-210, July (1969) ible (8) Krey, P. W. 9 Project Airstream USAEC Report HASL-217, January (1970) <u>i</u> -(9) Volchok, H. L. and Kleinman, M. T. Radionuclides and Lead in Surface Air USAEC Report HASL-217 (Appendix) January (1970), p. D-1 (10)Volchok, H. L. The Global Sr-90 Budget USAEC Report HASL-207, April (1969)

the

(11)Shleien, B., Cochran, J.A. and Magno, P. Sr-90, Sr-89, Pu-239 and Pu-238 Concentration in Ground Level Air from 1964 - 1969 Radiological Health Data and Reports U. S. Dept. of Health Education & Welfare, March 1970 (in press) Patterson, C.C. and Salvia, J.D. (12)Lead in the Modern Environment Scientist & Citizen, April, 1968, p. 66 (13)Prospero, J.M. and Carlson, T.N. Radon-222 in the North Atlantic Trade Winds: Its Relationship to Dust Transport from Africa Science, 167, p. 974, 1970 (14)Kay, K.. A Look at the Future of Hazardous Contamination of the Circumpolar Environment Arch. Environmental Health, 17, 1968, p. 653 (15)EURATOM Joint Nuclear Research Centre - Ispra Establishment USAEC Report HASL-193, April (1968), p. III-34 (16)Ibid USAEC Report HASL-197, July (1969), p. III-57 (17)Ibid USAEC Report HASL-200, October (1968), p. III-13 (18)Ibid USAEC Report HASL-204, January (1969) p. III-31 (19)Ibid USAEC Report HASL-207, April (1969), p. III-35 (20)Ibid USAEC Report HASL-210, July (1969), p. III-74 (21)Ibid USAEC Report HASL-214, October (1969), p. III-6 (22)Ibid USAEC Report HASL-217, January (1970), p. III-16 (23) Plutonium Isotopes at Selected Sites

D


r

Ξ

I - 24

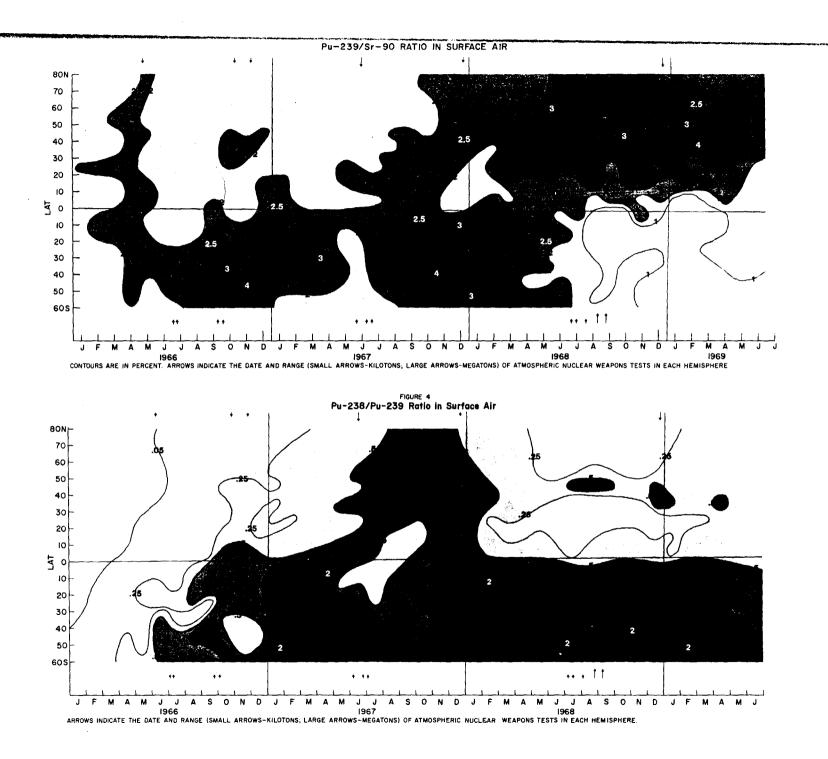
and the second second

USAEC Report HASL-217 (Appendix), January (1970), p. C-1



٦,

FIGURE 2 Pu-239/Sr-90 Ratio Just Above the Tropopause 90N 80 70 2.5 60 2 2.5 50 40 30 20 OI LAT 0 11 10 1.02.5 20 3.0 30 1.0 40 50 ++ + 1 1 60 L+ - 🕈 🕈


70S JU JY AU S O N D J F Mr Ap My JU JY AU S O N D J F Mr Ap My

CONTOURS ARE IN PERCENT. ARROWS INDICATE THE DATE AND RANGE (SMALL ARROWS - KILOTONS; LARGE ARROWS - MEGATONS) OF ATMOSPHERIC NUCLEAR WEAPONS TESTS IN EACH HEMISPHERE.

þ

4.....

WEAPONS TESTS IN EACH HEMISPHERE.



PART II

THE REAL PROPERTY AND ADDRESS.

---

BLAG STATIST

HASL FALLOUT PROGRAM DATA



· · ·

#### 1. Fallout Deposition

D

h

a

1

- 1.1 Monthly Precipitation
  - 1.11  $Sr^{90}$  and  $Sr^{89}$  in Monthly Deposition at World Land Sites

Precipitation and dry fallout are collected over monthly periods at stations in the United States and overseas. The samples are analyzed for Sr-90 and Sr-89 when it is expected to be present. A description of the sampling network and available data for each site are given in the <u>Appendix</u>, <u>Section A</u>.

#### 1.12 Other Isotopes at Selected Sites

At a number of stations in the United States, monthly deposition collections were analyzed for radiostrontium and other nuclides of interest to the Atomic Energy Commission. Multinuclide analyses were discontinued as of July 1967 and the complete data reported in HASL-193, p. II-4 through II-25.

Plutonium analyses of monthly deposition are continuing at New York City, Melbourne, Seattle, Honolulu, Salisbury, Durban, and Rio de Janeiro. Available data are given in the <u>Appendix</u>, <u>Section C</u>.

1.2 Radiostrontium Deposition at Atlantic Ocean Weather Stations

Measurements of radicstrontium in precipitation and dry fallout collections at four U. S. Coast Guard Stations in the North Atlantic Ocean are carried out for comparison with land stations in the same latitude band. A description of the stations and available data are given in the <u>Appendix</u>, <u>Section B</u>.

por perior

#### 2. Surface Air Sampling Program

The Health and Safety Laboratory has been collecting surface air particulate samples at stations in the Western Hemisphere since January 1963. The filters are analyzed for a number of fission and activation product radionuclides. A description of the program and available data are given in the <u>Appendix</u>, <u>Section D</u>.

II ~ 2

#### 3. Project Airstream

The Health and Safety Laboratory measures radioactivity in the lower stratosphere employing the RB-57F aircraft as a sampling platform. The aircraft are flown by the 58th Weather Reconnaissance Squadron under the direction of the 9th Weather Wing of the Air Weather Service. The missions are scheduled for early February, May, August and November and the coverage extends from  $75^{\circ}N$  to  $51^{\circ}S$  latitude in the Western Hemisphere. Air filter samples are collected from 12 to 19 km altitude and analyzed for ten radionuclides. A more complete description of the program and available data are given on pages II-9 to II-67.

محتب مأسار فسنع شعفت التعادية فاللاء وترتدره عن

#### 4. High Altitude Balloon Sampling Program

Balloon borne filtering devices are used to collect nuclear debris at altitudes from 24-41 km. Balloon launchings are conducted quarterly at Fairbanks, Alaska, 65<sup>°</sup>N; San Angelo, Texas, 31<sup>°</sup>N; Panama C.Z., 9<sup>°</sup>N; and Mildura, Australia, 34<sup>°</sup>S. Filters are analyzed for ten radionuclides. A more complete description of the program and available data were presented in HASL-217 cn pages II-148 to II-206. Corrected sampling dates for three samples are given in this report beginning on page II-68.

#### 5. Radiostrontium in Milk and Tap Water

Strontium<sup>90</sup> levels in both powdered and fresh milk distributed in New York City and tap Water sampled at the Health and Safety Laboratory, have been measured on a monthly basis since 1954. These data are summarized in tabular and graphical form in the <u>Appendix</u>, <u>Section E</u>.

## 6. <u>Strontium<sup>90</sup> in Diets</u>

Quarterly estimates of the annual dietary intake of Sr<sup>90</sup> of New York City, Chicago, and San Francisco residents have been made based on analyses of foods purchased at these three cities every three months since 1960. Sampling in Chicago has been discontinued. The program is described and available data reported on p. II-4 to II-6 of this report.

#### 7. <u>UNSCEAR - WHO Bone Program</u>

ind ind

ns

ns ari-

Ven

Available Sr<sup>90</sup> data for human bone samples collected in 1969 from countries in Latin America and Africa are presented on pages II-7 and II-8 of this report.

LOI AR GINTS

6. HASL Diet Studies: Fourth Quarter 1969

by J. Rivera, (HASL)

And a ser as Deneral Said Look State

Results of the measurements of the Sr<sup>90</sup> content of foods purchased in New York City and San Francisco in the fourth quarter of 1 are given in the following table. Estimates of the daily intake of based on these measurements and on the revised consumption statistic given in a recently available U. S. Department of Agriculture Report are also listed.

The estimates of daily  $Sr^{90}$  intake are a continuation of the HAS Tri-City diet studies which were started in March of 1960. Results c the earlier measurements along with those made during 1969 are shown graphically in the figure on page II-6. A complete description of th sampling methods and philosophy of the HASL diet studies was given in HASL-200<sup>(3)</sup>.

#### REFERENCES

<u>D</u>.

h

а

]

- (1) Food Consumption of Households in the United States Spring 1968 A Preliminary Report, U.S.D.A. ARS 62-16, August 1967
- (2) Rivera, J. and Harley, J. H. HASL Contributions to the Study of Fallout in Food Chains USAEC Report HASL-147, July (1964)
- (3) USAEC Report HASL-200, October (1968), p. II-6

II - 4

STRONTIUM<sup>90</sup> IN NEW YORK CITY AND SAN FRANCISCO DIETS

the

ŴŊ

:s of

HASL

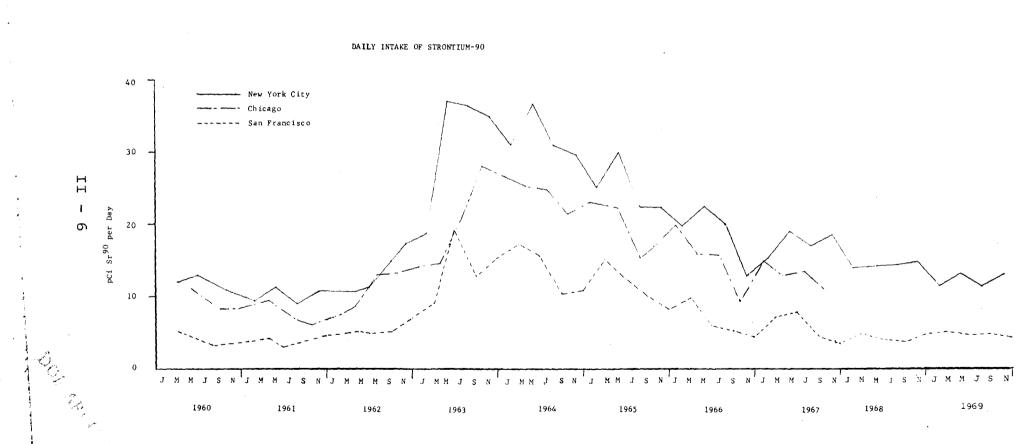
 $\operatorname{ort}(1)$ 

.

it.cs

of Sr90

of 1969


5

ΗSL,

- Fourth Quarter 1969 -

nī

|    | к<br>                    |          |           |                                   | NEW YOU    | RK CITY  |                                      | SAN                  | FRANCISCO      |                                      |
|----|--------------------------|----------|-----------|-----------------------------------|------------|----------|--------------------------------------|----------------------|----------------|--------------------------------------|
|    | Diet Category            | kq/yr.   | gCa<br>yr | % of<br>yearly<br>intake<br>of_Ca | pCi Sr90   | pCi Sr90 | % of<br>yearly<br>intake<br>of Sr-90 | pCi Sr <sup>90</sup> | pCi Sr90<br>yr | % of<br>yearly<br>intake<br>of Sr-90 |
|    | DAIRY PRODUCTS           | 200      | 216.0     |                                   | 9.2        | 1840     |                                      | 2.1                  | 420            |                                      |
|    |                          |          |           | 58                                |            |          | 38                                   |                      |                | 27                                   |
|    | FRESH VEGETABLES         | 48       | 18.7      |                                   | 18.1       | 869      |                                      | 4.0                  | 192            |                                      |
|    | CANNED VEGETABLES        | 22       | 4.4       |                                   | 8.2        | 180      |                                      | 3.4                  | 75             |                                      |
|    | ROOT VEGETABLES          | 10       | 3.8       |                                   | 7.8        | 78       |                                      | 4.5                  | 45             |                                      |
|    | POTATOES                 | 38       | 3.8       |                                   | 6.5        | 247      |                                      | 1.1                  | 42             |                                      |
|    | DRY BEANS                | 3        | 2.1       |                                   | 36.8       | 110      |                                      | 11.1                 | 33             |                                      |
|    |                          |          |           | 9                                 |            |          | 31                                   |                      |                | 24                                   |
|    | FRESH FRUIT              | 59       | 9.4       |                                   | 10.5       | 620      |                                      | 3.1                  | 183            |                                      |
|    | CANNED FRUIT             | 11       | 0.6       |                                   | 1.7        | 19       |                                      | 1.1                  | 12             |                                      |
| н  | FRUIT JUICES             | 28       | 2.5       |                                   | 3.7        | 104      |                                      | 1.8                  | 50             |                                      |
| н  |                          |          |           | 3                                 |            |          | 15                                   |                      |                | 16                                   |
| ł  | DAVEDU DOODUGEG          | 44       | F0 7      |                                   | 6 5        | 286      |                                      | 4.4                  | 194            |                                      |
| ഗ  | BAKERY PRODUCTS<br>FLOUR | 44<br>34 | 53.7      |                                   | 6.5<br>5.5 | 187      |                                      | 4.4<br>3.8           | 129            |                                      |
| •  |                          |          | 6.5       |                                   |            |          |                                      | 5.8                  | 75             |                                      |
|    | WHOLE GRAIN PRODUCTS     | 11       | 10.3      |                                   | 16.2       | 178      |                                      |                      |                |                                      |
|    | MACARONI                 | 3        | 0.6       |                                   | 4.0        | 12       |                                      | 3.1                  | 9              |                                      |
|    | RICE                     | 3        | 1.1       | 20                                | 1.7        | 5        |                                      | 2.5                  | 8              | 26                                   |
|    |                          |          |           | 20                                |            |          | 14                                   |                      |                | 20                                   |
|    | MEAT                     | 79       | 12.6      |                                   | 0.5        | 40       |                                      | 0.4                  | 32             |                                      |
|    | POULTRY                  | 20       | 6.0       |                                   | 0.7        | 14       |                                      | 1.7                  | 34             |                                      |
|    | EGGS                     | 15       | 8.7       |                                   | 1.7        | 26       |                                      | 2.5                  | 38             |                                      |
|    | FRESH FISH               | 8        | 7.6       |                                   | 0.3        | 2        |                                      | 0.3                  | 2              |                                      |
| -  | SHELL FISH               | 1        | 1.6       |                                   | 1.6        | 2        |                                      | 0.6                  | 1              |                                      |
| -  |                          |          |           | 1.0                               |            |          |                                      |                      |                | 7                                    |
|    |                          |          |           | 10                                |            |          | 2                                    |                      |                | 7                                    |
| .# | YEARLY INTAKE            |          | 370       |                                   |            | 4819     |                                      |                      | 1574           |                                      |
|    | DAILY INTAKE = pCi/g Ca  |          |           |                                   |            | 13.0     |                                      |                      | 4.2            |                                      |



**ب** لا ا

÷...

j., •

ຟີ ສີ **ໄ**ປ

#### John H. Harley

State and same and a state of the second

In the work of the United Nations Scientific Committee on the Effects of Atomic Radiation, the major effort in evaluating fallout from weapons tests is directed towards estimating the dose commitment. A major contributor to bone dose is strontium-90 but there have not been adequate data for many regions in the world. The Committee decided that it would be useful to have even limited data for portions of the world not otherwise covered. It was agreed that some estimate could be made based on a small number of samples of adult bone and they requested the World Health Organization to assist in procuring samples.

Dr. E. I. Komorov of WHO has been coordinating this program. Samples for 1969 have been received from Senegal, Jamaica, Chile and Venezuela. Negotiations are under way to obtain additional material from other countries in Africa and from Asia. The samples are being analyzed by the Health and Safety Laboratory and the results are presented here as a tabulation of the available data.

Dr. Eduardo Penna-Franca of Brazil has also supplied samples, and they are included in the tabulation for comparison.

II - 7

 $\phi_{V_{ij}} = w^{ij} D_{D_{ij}}$ 

|                  |        |                      | BONE FROM THE W | HU    |                      |
|------------------|--------|----------------------|-----------------|-------|----------------------|
|                  | _      | pCi Sr <sup>90</sup> |                 | -     | pCi Sr <sup>90</sup> |
| <u>Aqe (yr.)</u> | Sex    | per q Ca             | Age (yr.)       | Sex   | per q Ca             |
|                  | CHILE  |                      | VENE            | ZUELA |                      |
| 91               | м      | 2.0                  | 56              | м     | 0.5, 0.6*            |
| 58               | м      | 1.7                  | 41              | F     | 0.4                  |
| 74               | м      | 2.3, 2.0*            | 32              | м     | 0.7                  |
| 46               | м      | 1.5                  | 63              | м     | 0.6                  |
| 33               | м      | 1.1                  | 60              | F     | 0.8                  |
| 19               | м      | 2.7                  | unknown         | М     | 0.6                  |
| 50               | F      | 2.3                  | 42              | F     | 0.6                  |
| 51               | м      | 1.3                  | 26              | F     | 0.8                  |
|                  |        |                      | 67              | м     | 0.7                  |
|                  |        |                      | 65              | м     | 0.7                  |
| 1                | BRAZIL |                      | 50              | F     | 0.7                  |
|                  |        |                      | 83              | F     | 0.7                  |
| 40               | М      | 1.0                  | 56              | М     | 0.5                  |
| 25               | М      | 1.0                  | 70              | F     | 0.7                  |
| 40               | М      | 1.0                  | 0.2             | F     | 2.5                  |
| 30               | М      | 1.4, 1.4*            | 23              | м     | 0.5                  |
| 31               | F      | 0.7, 0.7*            | 30              | М     | 0.7                  |
|                  |        |                      | 26              | F     | 0.7                  |
|                  |        |                      | 30              | F     | 1.1                  |
| J                | AMAICA |                      | unknown         | м     | 0.7                  |
|                  |        |                      | 24              | F     | 0.8, 0.8*            |
| 62               | F      | 1.2                  | 25              | М     | 0.7                  |
| 42               | F      | 1.4                  | •               |       |                      |
| 34               | м      | 1.0                  | SENEO           | AL    |                      |
| 60               | F      | 0.6                  |                 |       |                      |
| 36               | м      | 1.5                  | 70              | F     | 0.5                  |
| 67               | М      | 1.0                  | 58              | м     | 0.9                  |
| 50               | м      | 1.3                  | 60              | F     | 1.0                  |
| 61               | F      | 1.2                  | 55              | м     | 0.8, 0.8*            |
| 57               | м      | 0.9                  | 50              | М     | 0.8                  |
| 51               | м      | 0.8, 0.8*            | 41              | F     | 0.4                  |
| 46               | м      | 1.1                  | 40              | м     | 1.7                  |
| 57               | F      | 0.6                  | 43              | М     | 1.5                  |
| 65               | F      | 1.0                  | 34              | М     | 1.8                  |
| 19               | м      | 1.6                  | 47              | М     | 1.1                  |
| 54               | F      | 0.7                  | 35              | м     | 0.8                  |
| 72               | M      | 1.8                  | 80              | F     | 0.5                  |
| 23               | м      | 1.3                  |                 |       |                      |
| 28               | F      | 2.2                  |                 |       |                      |
| 22               | м      | 1.1                  |                 |       | •                    |
| 22               | F      | 1.8                  |                 |       |                      |
| 21               | M      | 1.6, 1.6*            |                 |       |                      |
|                  | м      | 0.8                  |                 |       |                      |
| 19               |        |                      |                 |       |                      |

1969 HUMAN BONE FROM THE WHO

\*duplicate analysis

II - 8

Del Contractor

D

h

5

]

ŧ

#### 3. PROJECT AIRSTREAM

المستدفة بمقرما المور والأهاورية

by Philip W. Krey (HASL) Michael Kleinman (HASL)

The set of the second second set the second set the set of the second second second second second second second

Project Airstream is HASL's study of radioactivity in the lower tratosphere employing the RB-57F aircraft as a sampling platform. The ircraft are flown by the 58th Weather Reconnaissance Squadron under the direction of the 9th Weather Wing of the Air Weather Service. This project is a continuation of the Defense Atomic Support Agency's Project Stardust except that Airstream's sampling missions are limited to only one per season.

The data in this report cover the missions flown in April, July and October 1969. Previous reports containing results from this program are given in references 1 through 8.

#### FLIGHT SCHEDULE

Airstream missions are scheduled for February, May, August and November with a ± one month slippage. However, each mission must be completed within a nine day interval. The first Airstream mission was flown in August 1967. The flight trajectory and altitude coverage of an Airstream mission are shown in Figures 3a and 3b, respectively. Prior to February 1969, a large gap in the altitude coverage between 15.2 and 18.3 km existed in the sensitive polar regions of each hemisphere.

II - 9

Ster Price

Beginning with the February 1969 mission, this gap was partially clo. by sampling at 16.3 km instead of 18.3 km at all latitudes poleward a about 35<sup>°</sup> in both hemispheres.

The coverage in Figure 3b extends almost continuously at the indicated altitudes from 75°N to 51°S latitude except for a slight di continuity between 10°S to 16°S. Each mission is accomplished by con ducting return flights northward and southward from each of the four Air Force Bases of operation:

| Eielson AFB  | 64 <sup>0</sup> 40 ' N | 147 <sup>0</sup> 06'W |
|--------------|------------------------|-----------------------|
| Kirtland AFB | 35 <sup>0</sup> 03 ' N | 106 <sup>0</sup> 36'W |
| Albrook AFB  | 08 <sup>0</sup> 57'N   | 79034 W               |
| Mendoza AFB  | 32 <sup>0</sup> 49'S   | 68 <sup>0</sup> 47'W  |

#### AIR FILTER SAMPLES

D

Air filter samples are collected along the flight tract at latitude increments of approximately 3 to 4<sup>°</sup> at each of the prescribed altitudes using the U-1 foil system. This system permits the sequential insertion of up to 12 IPC No. 1478 filter papers (diameter 16-3/8 into the sampling duct near the bomb bay on the right side of the aircraft. The volume of air sampled by each filter is calculated by the methods developed under Project Stardust and updated by Krajewski (9), and are reported as standard cubic meters (SCM) under the ICAO standard atmosphere (760 mm Hg and 15°C).

por provid

# TOTAL GAMMA AND GAMMA SPECTRUM MEASUREMENTS

Ward of Upon arrival at HASL, the filters are coded, logged and quartered. The entire sample (or a representative fraction if the activity is too high) is folded and placed in a plastic box, 8 cm x 6.5 cm x 3.1 cm deep, for gamma spectrometric analysis on an 8" x 4" NaI (Tl) crystal. The total gamma activity is integrated between 100 Kev and 3.0 Mev, and the gamma concentration is reported as counts per minute (cpm) per 100 SCM on the counting date. The complex spectrum is then submitted for computer resolution by least squares fitting into its component members.

#### RADIOCHEMICAL ANALYSIS

y closed

3/8")

ir-

ıe

),

ard

Based upon the gamma measurements, fractions of the filters are ticombined into appropriate composites which are sent to contractor laboratories for detailed radiochemical analyses including the following nuclides:

Fe-55Zr-95Pb-210Pu-238Sr-89Ce-141Po-210Pu-239,240Sr-90Ce-144Po-210Pu-239,240

At the present time, Trapelo Division/West formerly Tracerlab of Richmond, California is performing these analyses. Nuclide concentrations from radiochemical analyses are reported as picocuries per 100 standard cubic meters of air (pCi/100 SCM) at collection time. Following a previously established practice, Fe-55 is decay corrected to

II - 11

Mr. Martin

October 15, 1961 which is the average production date of this nucl in the 1961 test series. This is not to convey that all the Fe-55 currently in the stratosphere originated in the 1961 tests. To cor vert pCi/100 SCM to disintegrations per minute per  $10^3$  standard cut feet multiply by 0.629.

D

ŀ.

а

One standard deviation of the counting error for all data in this report is less than  $\pm 20\%$  and usually less than  $\pm 10\%$  unless anno tated with the symbols:

- A: One standard deviation of the counting error is between  $\pm 20 50\%$ .
- B: One standard deviation of the counting error is between  $\pm 51 100\%$ .
- \*: Activity is not detectable. This designation is applied to data when one standard deviation of the counting error is greater than ±100%.
- ?: The nuclide concentration of a specific sample is considered suspect because it is inconsistent with the concentration of the same nuclide in adjacent samples in space and time or because it is inconsistent with other nuclides in the same sample.

The nuclide activity for each sample is corrected for the normal radiochemical parameters such as chemical yield and detection efficiency, but it is important to note that a blank adjustment is also made. The value of the adjustment is determined for each nuclide by analyzing a number of blank samples, that is, samples containing no

II - 12

al an eight an line i

-----

ومصورية وراديا المتحد ويواجه ومرود

Bar Bar Mars

\*\*\*\*\*\*

nuclide e-55 o conl cubic

in anno-

1

đ

mal ci-

уy

activity. Any activity detected in blank samples represents the contamination introduced into the sample by the laboratory reagents and equipment. The average blank value for each nuclide with its measure of uncertainty is then subtracted from the sample activity.

والمستحكم والمحافظة والمحافظ والمحافظ والمتحافظ والمحادث والمتحافظ والمراجع والمحاف والمحاف والمحاف والمحاف والمستحد

The Po-210 activity has been decay corrected for ingrowth from its Pb-210 parent for the interval between its separation date and the day of collection. The reported error reflects the uncertainty of both the Pb-210 and Po-210 measurements.

#### RESULTS

An error in the volume computations of ten samples from the April 1969 mission was uncovered. The corrected radiochemical concentrations for these ten samples are given in Table 3a. The radiochemical analyses of the individual and composite samples from the July 1969 mission are reported in Table 3b.

The gross gamma and Zr-95 concentrations derived from NaI(T1) gamma spectral analyses of the October 1969 mission are given in Table 3c. Such spectra reflect the combined photopeaks of Zr-95 and its daughter Nb-95 at counting time. To calculate the quantity of  $Zr^{95}$ in this mixture, the production date of the fresh fission product debris must be known. The Zr-95 data in Table 3c were calculated on the assumption that most of the Zr-95 in each of three latitude regions of

II - 13

and ARCH - 100

the stratosphere were produced by three separate events as follows:

| Latitude Region | <u>Nuclear Test</u>                        |
|-----------------|--------------------------------------------|
| 90N - 40N       | Chinese test of September 29, 1969         |
| 40N - 10N       | Chinese test of December 28, 1968          |
| 10N - >51S      | French thermonuclear tests in mid-<br>1968 |

The samples in Tables 3b and 3c are grouped according to the altitude of collection beginning with 19.2 km. Within each altitude group, the samples are then listed with decreasing latitude. The fractions of each individual filter making up the composite are list immediately below the composite sample number. The collection parameters of the composite sample and the contractor laboratory performing the analyses are given prior to the nuclide concentrations.

#### QUALITY CONTROL

D

ŀ.

ē

To evaluate the contractor's performance in radiochemical analyses, HASL routinely submits blind duplicates, blanks and standards. The duplicates are identical composites submitted with different code numbers. The blanks are unexposed filters supplied by the Air Force. Standards are blank filters onto which calibrated solutions of various nuclides have been evaporated.

II - 14

All States

Llows: These calibrated solutions are available from a number of sources (i.e., Radiochemistry Center, IAEA, Nuclear Chicago) and are recali-.969 brated at HASL. Generally, the agreement between HASL's measurement and the reported value is very good. HASL does not calibrate for  $Pb^{210}$ 68 iddirectly, and the supplier's value is accepted. HASL does calibrate for Po-210, and its evaluation of the Po-210 in a Pb-210 standard is now adopted rather than the equilibrium value from the Pb-210. :he itude The results of the quality control program for the October 1969 he mission are summarized in Table 3d. The standards indicate that the average accuracy of analysis is within ±10% or less. The blank anallisted yses indicate that the contamination introduced by normal handling araformand laboratory procedure is either unmeasurable or insignificant for all the nuclides studied. The duplicate samples show that the precision error of analyses is generally less than ±10% except when the counting error of the measurement becomes the major uncertainty. al-

the a sale press be to de de the same and a sol that an and the same white a starter

A serious exception to this general statement on analytical preds. cision is the Pu-238 and Pu-239 results from sample 2476 which differ widely from the results of its duplicate 2458. While plutonium concce. centrations and ratios from sample 2458 appear reasonable for the ious region of the stratosphere from which it was collected, they do not

II - 15

for sample 2476. The results of the other quality control sample in this and earlier reports attest to the overall reliability of the plutonium analyses. Therefore, it is likely that a sample s of the plutonium fraction of sample 2476 took place during analys although no positive evidence of such a switch was found. A thir duplicate of this sample will be submitted for Pu analyses to ver this conclusion.

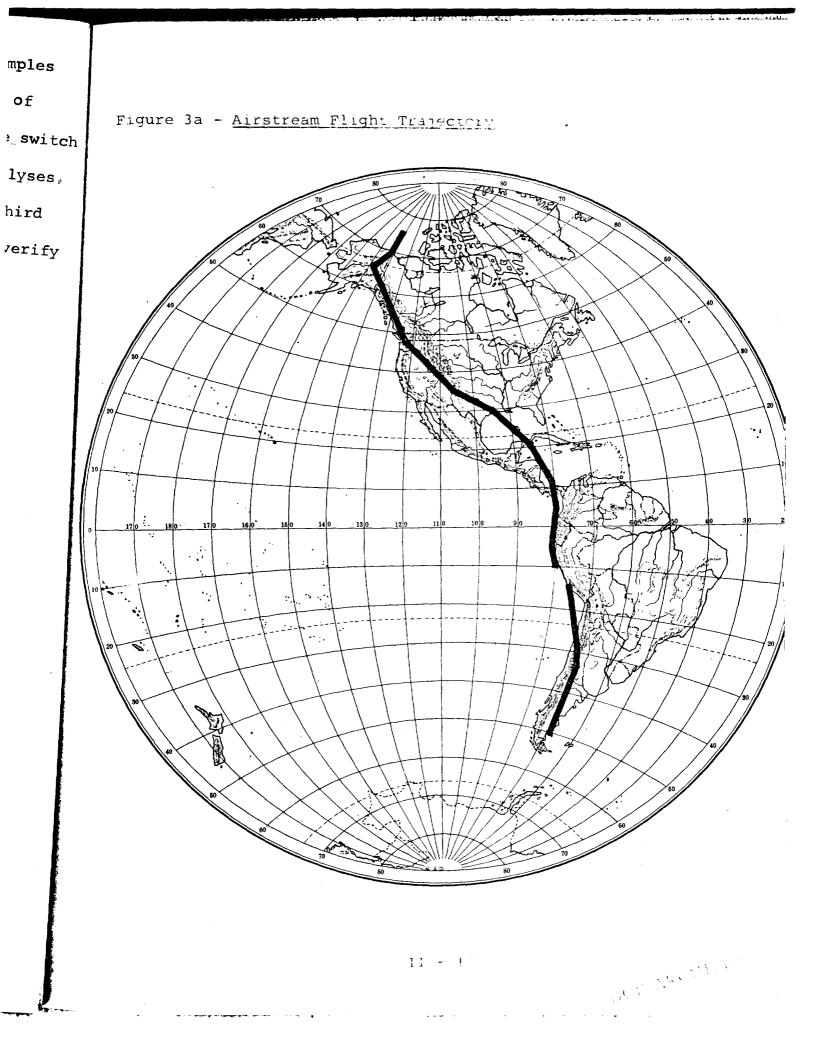
میکه این این . میداده از این این این میرم میرم محمد ایک را ایک از این میرد.

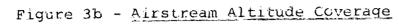
#### REFERENCES

D

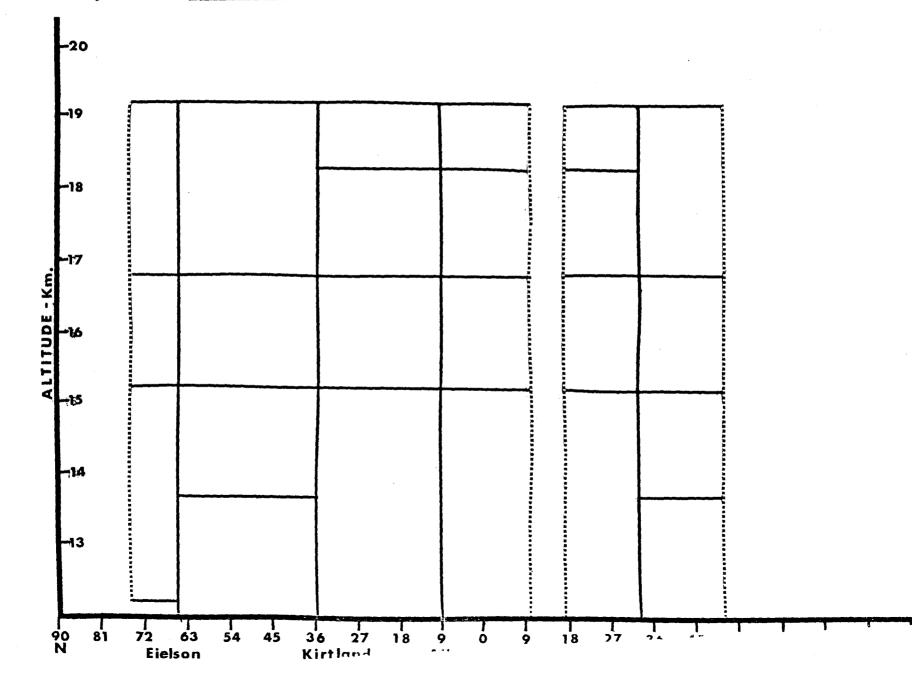
r.

ā


]


ŧ

- (1) Krey, P. W. Project Airstream USAEC Report HASL-183, October (1967)
- (2) Ibid, USAEC Report HASL-184, January (1968)
- (3) Ibid, USAEC Report HASL-193, April (1968)
- (4) Ibid, USAEC Report HASL-197, July (1968)
- (5) Ibid, USAEC Report HASL-204, January (1969)
- (6) Ibid, USAEC Report HASL-207, April (1969)
- (7) Ibid, USAEC Report HASL-210, July (1969)
- (8) Ibid, USAEC Report HASL-217, January (1970)
- (9) Krajewski, B.
   Calculations of Stratospheric Air Sample Volumes USAEC Report HASL-211, July (1969)


II - 16

DOD THE UP 10





. . -



ТТ •

-- 18

Ы

n 5

1.1

.

|                             |                                         |                                          | TAB                      | LE JA                    |                                          |
|-----------------------------|-----------------------------------------|------------------------------------------|--------------------------|--------------------------|------------------------------------------|
|                             | F                                       | ADIOCHEMICAL                             |                          |                          | POSITES                                  |
|                             |                                         |                                          | 19.2 KM                  |                          |                                          |
| SAMPLE NO.<br>Composed of:1 | 2172<br>/4:2052<br>2094<br>2095<br>2096 | 2224<br>1/4:2052<br>2094<br>2095<br>2096 | 2173<br>1/2:2053<br>2055 | 2176<br>1/2:1943<br>2001 | 2177<br>1/2:1944<br>1945<br>1946<br>1947 |
| MIDDOLUT OF                 | •                                       |                                          |                          |                          |                                          |
| MIDPOINT OF:<br>COLLECTION  | •<br>•                                  |                                          |                          |                          |                                          |
| DATE                        | 4/ 8/69                                 | 4/ 8/69                                  | 4/ 6/69                  | 4/ 9/69                  | 4/ 8/69                                  |
| LAT.<br>Long.               | 31N-21N<br>98W- 86W                     | 31N-21N                                  | 21N-12N                  | 75-205                   | 205-305                                  |
| VOL. OF AIR                 | 3.080                                   | 98₩- 86₩<br>3⊾080                        | 86W- 81W                 | 80W- 73W                 | 73W- 68W                                 |
| (100 SCM)                   | 30000                                   | 3.000                                    | 2.680                    | 4.320                    | 5.720                                    |
| LAB:                        | TLW                                     | TLW                                      | TLW                      | TEW                      |                                          |
| FF                          |                                         |                                          |                          | 16.71                    | TLW                                      |
| FE-55<br>SR-89              | 698.000                                 | 591.000                                  | 526.000                  |                          | 737.000                                  |
| SR-90                       | 3760.000<br>129.000                     | 3660.000                                 | 3290.000                 | 354.000                  | 1150.000                                 |
| ZR-95                       |                                         | 126.000                                  | 117.000                  | 64.200                   | 184.000                                  |
| CE-144                      | 6410.000<br>3470.000                    | 6530.000                                 | 5640.000                 | 814.000                  | 3220.000                                 |
| PB-210                      |                                         | 3360.000                                 | 2930.000                 | 1160.000                 | 4200.000                                 |
| PO-210                      | 0-561A                                  | 0.651A                                   | 000014                   | 0.657A                   | 0.496                                    |
| PU-238                      | 0.495                                   | 0.487                                    | 0.447                    | 0.536                    | 0.420                                    |
| PU-239                      | 0.443<br>2.494                          | 0.507                                    | 0-468                    | 0.462                    | 1.288                                    |
| 0 237                       | <b>26774</b>                            | 2.574                                    | .2.214                   | 0.641                    | 2.409                                    |

Shi dat za.

#### TABLE 3A

,. ·

нн

### RADIOCHEMICAL ANALYSIS OF APRIL 1969 COMPOSITES

16.8 KM

| SAMPLE NO. 2190       | 2192     |
|-----------------------|----------|
| COMPOSED OF: 1/2:1973 | 1/2:2120 |
| 1974                  | 2121     |
| 1975                  | 2122     |
| 2081                  |          |
| 2082                  |          |

| MIDPOINT OF:       |               |           |
|--------------------|---------------|-----------|
| COLLECTION<br>DATE | 4/ 8/69       | 4/ 8/69   |
| LAT.               | 59N-45N       | 35N-29N   |
| LONG.              | 136W-117W     | 106W- 94W |
| VOL. OF AIR        |               | 7.440     |
| (100 SCM)          |               | 1.0110    |
| LAB:               | TLW           | TLW       |
| FE-55              | 585.000       |           |
| SR-89              | 3500.000      | 2600.000  |
| SR-90              | 106.000       | 81.900    |
| ZR-95              | 6220.000      | 4460.000  |
| CE-144             | 3320.000      | 2330.000  |
| PB-210             | 0.516         | 0.622     |
| PO-210             | 0.513         | 0.501     |
| PU-238             | 0.482         | 0.229     |
| PU-239             | 2.339         | 1.460     |
| A:COUNTING         | ERROR IS 20-5 | 0 PERCENT |
|                    | FRROR IS 51-1 |           |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT \*:NOT DETECTABLE

TI -

20

÷...

?:DATA SUSPECT \*:

\*:NOT DETECTABLE

## TABLE 3A

## RADIOCHEMICAL ANALYSIS OF APRIL 1969 COMPOSITES

#### 13.7 KM

| SAMPLE NO.<br>COMPOSED OF:1/ | 2216<br>4:1961 | 2225<br>1/4:1961 | 2217<br>1/2:1964 |
|------------------------------|----------------|------------------|------------------|
|                              | 1962           | 1962             | 2107             |
|                              | 1963           | 1963             | 2101             |

| MIDPOINT OF  | •             |           |                |
|--------------|---------------|-----------|----------------|
| COLLECTION   |               |           |                |
| DATE         | 4/ 8/69       | 4/ 8/69   | 4/ 9/69        |
| LAT.         | 61N-53N       | 61N-53N   | 53N-47N        |
| LONG.        | 138W-129W     | 138W-129W |                |
| VOL. OF AIR  | 5.300         | 5.300     | 129W-121W      |
| (100 SCM)    |               | 000       | 9.330          |
|              |               |           | PC/100 SCM     |
| LAB:         | TLW           | TLW       | TLW            |
| FE-55        | 779.000       | 928.000   | 457.000        |
| SR-89        | 5980.000      | 5620.000  | 3260.000       |
| SR-90        | 168.000       | 163.000   | 98.400         |
| ZR-95        | 10100.000     | 9950.000  | 5510.000       |
| CE-144       | 5050.000      | 4880.000  | 2800.000       |
| PB-210       | 0.5794        | 0.431A    | 0.579          |
| PO-210       | 0.398         | 0.397     | 0.469          |
| PU-238       | 0.467         | 0.472     | 0.228          |
| PU-239       | 3.289         | 3.230     | 1.848          |
| A:COUNTING E | RROR IS 20-50 | PERCENT   | *:NOT DETECTAR |

B:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT 7:DATA SUSPECT \*:NOT DETECTABLE

н Н н

میں د مرکز ا د کر ا د کر ا د کر ا

.

21

## TABLE 3A

1 · · · ·

ĸ į

RADIOCHEMICAL ANALYSIS DF APRIL 1969 COMPOSITES

.

12.2 KM

SAMPLE NO. 2223 COMPOSED OF:1/2:1983 1984 1985

MIDPOINT OF: COLLECTION DATE 4/ 7/69 LAT. 75N-65N LONG. 146W-143W VOL. OF AIR 12.740 (100 SCM)

PC/100 SCM

| LAB:   |                      |
|--------|----------------------|
| SR-89  | TLW (020,000         |
| SR-90  | 4020.000             |
| ZR-95  | 127.000              |
| CE-144 | 7200.000<br>3590.000 |
| PU-238 |                      |
| PU-239 | 0.428<br>2.579       |
|        | 24219                |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT 7:DATA SUSPECT

\*:NOT DETECTABLE

TI -

 $\sim$ 

 $\sim$ 

. :

| SAMPLE NO.<br>Composed of:1                                                     | 2428                                                                                                                                                                                    | DIOCHEMICAL AND                                                                                                                                                                                                                                                                                                                                                                                             | ALYSIS OF JULY 1<br>19.2 KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 969 COMPOSITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                                                                                                                                         | 2429                                                                                                                                                                                                                                                                                                                                                                                                        | 19.2 KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 |                                                                                                                                                                                         | 2420                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 | 2409<br>2410<br>2424<br>2425                                                                                                                                                            | 2429<br>1/2:2308<br>2421<br>2422<br>2423                                                                                                                                                                                                                                                                                                                                                                    | 2430<br>1/2:2300<br>2309<br>2310<br>2311<br>2312                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2431<br>1/2:2296<br>2297<br>2298<br>2299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2432<br>1/2:2269<br>2270<br>2295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2433<br>1/2:2271<br>2272<br>2273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MIDPOINT OF:<br>COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 7/23/69<br>75N-59N<br>146W-136W<br>6.160                                                                                                                                                | 7/24/69<br>59N-47N<br>136W-121W<br>5.290                                                                                                                                                                                                                                                                                                                                                                    | 7/23/69<br>47N-35N<br>121W-106W<br>6.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/23/69<br>35N-26N<br>106W- 91W<br>5.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/26/69<br>26N-18N<br>91W- 84W<br>4.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/27/69<br>18N- 9N<br>84W- 79W<br>4.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                             | PC/100 SCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LAB:                                                                            | TLW                                                                                                                                                                                     | TLW                                                                                                                                                                                                                                                                                                                                                                                                         | TLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SR-90<br>ZR-95<br>CE-144<br>PB-210<br>PO-210<br>PU-238<br>PU-239                | 67.200<br>688.000<br>1090.000<br>0.376A<br>0.166B<br>0.582<br>1.222                                                                                                                     | 93.200<br>1250.000<br>1700.000<br>0.484A<br>0.361A<br>0.608<br>1.815                                                                                                                                                                                                                                                                                                                                        | 97.400<br>1180.000<br>1490.000<br>0.602A<br>0.300A<br>0.542<br>1.677                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93.200<br>1390.000<br>1830.000<br>0.604A<br>0.344A<br>0.400<br>1.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.200<br>1100.000<br>1470.000<br>0.679A<br>0.472A<br>0.299<br>1.337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.000<br>1220.000<br>1530.000<br>0.804A<br>0.675<br>0.356<br>1.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| B:COUNTING ER                                                                   | ROR IS 51-100                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                             | *:NOT DETECTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 | COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM)<br>-AB:<br>SR-90<br>ZR-95<br>CE-144<br>PB-210<br>PO-210<br>PO-210<br>PU-238<br>PU-239<br>A:COUNTING ER<br>B:COUNTING ER | MIDPOINT OF:         COLLECTION         DATE       7/23/69         LAT.       75N-59N         LONG.       146W-136W         VOL. OF AIR       6.160         (100 SCM)       67.200         AB:       TLW         SR-90       67.200         ZR-95       688.000         CE-144       1090.000         PB-210       0.376A         PO-210       0.166B         PU-238       0.582         PU-239       1.222 | AIDPOINT OF:         COLLECTION         DATE       7/23/69         LAT.       75N-59N         LONG.       146W-136W         136W-121W         VOL. OF AIR       6.160         100 SCM)       5.290         AB:       TLW         SR-90       67.200       93.200         ZR-95       688.000       1250.000         CE-144       1090.000       1700.000         PB-210       0.376A       0.484A         PO-210       0.166B       0.361A         PU-238       0.582       0.608         PU-239       1.222       1.815 | MIDPOINT OF:         CDLLECTION         DATE       7/23/69         LAT.       75N-59N         LONG.       146W-136W         JONG.       121W-106W         VOL. OF AIR       6.160         SR-90       67.200         SR-90       67.200         SR-90       67.200         SR-90       67.200         SR-95       688.000         L250.000       1180.000         CE-144       1090.000         PO-210       0.376A         O.376A       0.484A         O.300A         PU-238       0.582         O.4008       0.542         PU-239       1.222         1.815       1.677 | AIDPOINT OF:         COLLECTION         DATE       7/23/69       7/23/69       7/23/69         LAT.       75N-59N       59N-47N       47N-35N       35N-26N         LONG.       146W-136W       136W-121W       121W-106W       106W-91W         VDL. OF AIR       6.160       5.290       6.010       5.880         (100 SCM)       PC/100 SCM         AB:       TLW       TLW       TLW       TLW         SR-90       67.200       93.200       97.400       93.200         R-95       688.000       1250.000       1180.000       1390.000         ZE-144       1090.000       1700.000       1490.000       1830.000         2B-210       0.376A       0.484A       0.602A       0.604A         2O-210       0.166B       0.351A       0.300A       0.344A         2U-238       0.582       0.608       0.542       0.400         2U-239       1.222       1.815       1.677       1.697 | AIDPOINT OF:         COLLECTION         DATE       7/23/69       7/23/69       7/23/69         DATE       7/23/69       7/23/69       7/26/69         LAT.       75N-59N       59N-47N       47N-35N       35N-26N       26N-18N         LONG.       146W-136H       136W-121H       121W-106H       106H-91H       91H-84H         VOL. OF AIR       6.160       5.290       6.010       5.880       4.090         (100 SCM)       PC/100 SCM         AB:       TLW       TLW       TLW       TLW       TLW         SR-90       67.200       93.200       97.400       93.200       74.200         2R-95       688.000       1250.000       1180.000       1390.000       1100.000         2E-144       1090.000       1700.000       1490.000       1830.000       1470.000         2B-210       0.376A       0.484A       0.602A       0.604A       0.679A         20-238       0.562       0.608       0.542       0.400       0.299         20-239       1.222       1.815       1.677       1.697       1.337         A:COUNTING ERROR IS 20-50 PERCENT       *:NOT DETECTABLE       #:NOT DETECTABLE |

And a second second

#### TADIE 20

| SAMPLE NO.<br>Composed of                                                                                            | 2434<br>:1/2:2259<br>2260                                                                                 | 2435<br>1/2:2256<br>2257<br>2258                                                    | TABLE<br>ANALYSIS OF JULY<br>19.2 KM<br>2436<br>1/2:2346<br>2347<br>2348                                      | 3B<br>1969 COMPOSITES<br>2437<br>1/2:2349<br>2350<br>2366<br>2367          | 2438<br>1/2:2362<br>2363<br>2364<br>2365                                    |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| MIDPOINT OF:<br>COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM)                                      | 7/25/69<br>9N- 1N<br>80W- 79W<br>3.380                                                                    | 7/25/69<br>1N-11S<br>81W- 78W<br>5.430                                              | 7/24/69<br>15S-26S<br>75W- 71W<br>4.310                                                                       | 7/24/69<br>265-405<br>71W- 68W<br>5°750                                    | 7/23/69<br>405-515<br>68W- 67W<br>4020                                      |
| LAB:<br>SR-90<br>ZR-95<br>CE-144<br>PB-210<br>PU-238<br>PU-239<br>A:COUNTING ERR<br>B:COUNTING ERR<br>?:DATA SUSPECT | TLW<br>69.000<br>615.000<br>1090.000<br>0.676A<br>0.539A<br>0.335<br>1.070<br>OR IS 20-50<br>OR IS 51-100 | TLW<br>55.600<br>511.000<br>922.000<br>0.711<br>0.433A<br>0.351<br>0.867<br>PERCENT | PC/100 SCM<br>TLW<br>113.000<br>577.000<br>1720.000<br>0.655A<br>0.576A<br>0.728<br>1.334<br>*:NOT DETECTABLE | TLW<br>128.000<br>637.000<br>2020.000<br>0.762<br>0.230B<br>0.829<br>1.442 | TLW<br>140.000<br>711.000<br>2170.000<br>0.404A<br>0.287A<br>1.002<br>1.745 |

.

ΤT 1

24

•

•

.

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

#### 18.3 KM

| SAMPLE NO. 2439      | 2440     | 2441     | 2442     | 2443     | 2444     |
|----------------------|----------|----------|----------|----------|----------|
| COMPOSED OF:1/2:2291 | 1/2:2267 | 1/2:2265 | 1/2:2252 | 1/2:2253 | 1/2:2343 |
| 2292                 | 2294     | 2266     | 2277     | 2254     | 2344     |
| 2293                 |          | 2276     |          | 2255     | 2345     |
| 2329                 |          |          |          |          |          |

| MIDPOINT OF:       |           |          |            |          |          |          |
|--------------------|-----------|----------|------------|----------|----------|----------|
| COLLECTION<br>DATE | 7/24/69   | 7/25/69  | 7/27/69    | 7/26/69  | 7/25/69  | 7/24/69  |
| LAT.               | 35N-26N   | 26N-18N  | 18N- 9N    | 9N- 1N   | 1N-11S   | 155-265  |
| LONG.              | 106W- 91W | 91W- 84W | 84W- 79W   | 80W- 79W | 81W- 78W | 73W- 71W |
| VOL. OF AIR        | 7.690     | 2.800    | 4.060      | 3.790    | 6.570    | 5.820    |
| (100 SCM)          |           |          |            |          |          |          |
|                    |           |          | PC/100 SCM |          |          |          |
| LAB:               | TLW       | TLW      | TLW        | TLW      | TLW      | TLW      |
| SR-90              | 86.400    | 65.500   | 61.200     | 44.900   | 42.200   | 70.500   |
| ZR-95              | 1460.000  | 1080.000 | 951.000    | 521.000  | 466.000  | 463.000  |
| CE-144             | 1800.000  | 1280.000 | 1220.000   | 777.000  | 699.000  | 1110.000 |
| PB-210             | 0.698     | 1.200    | 1.021      | 0.948    | 0.865    | 1.161    |
| PO-210             | 0.487     | 0.0 B    | 0.521A     | 0.306B   | 0.484A   | *        |
| PU-238             | 0.311     | 0.254    | 0.208      | 0.194    | 0.220    | 0.411    |
| PU-239             | 1.559     | 1.203    | 1.058      | 0.722    | 0.649    | 0.910    |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

#### 18.3 KM

|    | SAMPLE NO.       |                       |     |
|----|------------------|-----------------------|-----|
|    | COMPOSED OF:1    | /2:2342<br>2354       |     |
|    |                  | 2004                  |     |
|    |                  |                       |     |
|    |                  |                       |     |
|    |                  |                       |     |
|    |                  |                       |     |
|    | MIDPOINT OF:     |                       |     |
|    | COLLECTION       |                       |     |
|    | DATE             | 7/25/69               |     |
|    | LAT.             | 265-335               |     |
| н  | LONG.            | 71W- 68W              |     |
| н  | VOL. OF AIR      | 3.930                 |     |
| I  | (100 SCM)        |                       |     |
| 26 |                  |                       |     |
|    | LAB:             | TLW                   |     |
|    | SR-90            | 106.000               |     |
|    | ZR-95            | 600.000               |     |
|    | CE-144           | 1850.000              |     |
|    | PB-210           | 0.610A                |     |
|    | PO-210           | 0.331A                |     |
|    | PU-238<br>PU-239 | 0.739<br>1.348        |     |
|    | PU-239           | 1.540                 |     |
|    | A:COUNTING ER    | ROR IS 20-50 PERCENT  | *:1 |
|    |                  | ROR IS 51-100 PERCENT |     |
|    | ?:DATA SUSPEC    | . T                   |     |
|    |                  |                       |     |

#### NOT DETECTABLE

PC/100 SCM

## RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

5

#### 16.8 KM

| SAMPLE NO.<br>COMPOSED OF:1 | 2446<br>1/4 <b>:</b> 2404 | 2475<br>1/4:2404     | 2447<br>1/2:2417     | 2448<br>1/2:2303             | 2449                                     | 2450                     |
|-----------------------------|---------------------------|----------------------|----------------------|------------------------------|------------------------------------------|--------------------------|
|                             | 2405<br>2406<br>2407      | 2405<br>2406<br>2407 | 2418<br>2419<br>2420 | 2304<br>2305<br>2306<br>2307 | 1/2:2320<br>2321<br>2322<br>2323<br>2328 | 1/2:2245<br>2246<br>2319 |
|                             |                           |                      |                      |                              |                                          |                          |
| MIDPOINT OF:<br>COLLECTION  |                           |                      |                      |                              |                                          |                          |
| DATE                        | 7/22/69                   | 7/22/69              | 7/24/69              | 7/23/69                      | 7 / 2 / / / 6                            |                          |
| LAT.                        | 75N-61N                   | 75N-61N              | 61N-50N              | 50N-39N                      | 7/24/69<br>39N-26N                       | 7/26/69                  |
| LONG.                       | 150W-143W                 | 150W-143W            | 138W-125W            | 125W-108W                    | 108W- 91W                                | 26N-18N<br>91W- 841      |
| VOL. OF AIR<br>(100 SCM)    | 3.820                     | 3.820                | 7.530                | 10.090                       | 13.850                                   | 6°950                    |
| LUU JUNI                    |                           |                      | PC/100 SCM           |                              |                                          |                          |
| LAB:                        | TLW                       | TLW                  | TLW                  | TLW                          | TLW                                      | TLW                      |
| 5R-90                       | 97.700                    | 103.000              | 106.000              | 40.400                       | 47.900                                   |                          |
| R-95                        | 1390.000                  | 1470.000             | 1540.000             | 721.000                      | 803.000                                  | 46.600<br>714.000        |
| E-144                       | 1790.000                  | 2000.000             | 1980.000             | 912.000                      | 1030.000                                 | 951.000                  |
| B-210                       | 0 <b>.</b> 569A           | 0.551A               | 0.790                | 1.188                        | 0.975                                    | 1.30                     |
| 0-210                       | 0.295A                    | 0.388B               | 0.396A               | 0°293B                       | 0.443                                    | 0.434                    |
|                             | 0.452                     | 0.525                | 0.430                | 0.119                        | 0.156                                    | 0.120                    |
| 238<br>20-239               | 1.726                     | 1.864                | 1.816                |                              |                                          |                          |

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES 16.8 KM SAMPLE NO. 2451 2452 2453 2454 2455 2340A 1/2:2237 COMPOSED 0F:1/2:2247 1/2:2234 1/2:2336 1/2:2338 1/2:2340 2238 2337 2248 2235 2339 2249 2236 MIDPOINT OF: COLLECTION DATE 7/27/69 7/23/69 7/23/69 7/24/69 7/24/69 7/24/69 LAT. 9N- 1N 1N-115 155-235 235-295 295-335-18N- 9N НН LONG. 84W- 79W 80W- 79W 81W- 78W 75W- 72W 72W- 69W 69W- 68W 7.190 5.800 8.180 5.580 3.920 2.780 VOL. OF AIR (100 SCM) N PC/100 SCM ä LAB: TLW TLW TLW TLW TLW TLW 37.300 30.100 SR-90 22.400 9.265 12.400 16.000 ZR-95 358.000 126.000 141.000 135.000 240.000 159.000 218.000 255.000 CE-144 489.000 167.000 588.000 476.000 1.280 1.448 0.947 PB-210 1.050 1.065 \* 0.413A P0-210 0.329A 0.216B \* 0.099 0.213 0.221 PU-238 0.056 0.052 0.059 0.392 0.172 0.182 0.207 0.429 0.399 PU-239 A:COUNTING ERROR IS 20-50 PERCENT **\*:NOT DETECTABLE** B:COUNTING ERROR IS 51-100 PERCENT

TABLE 3B

**?:DATA** SUSPECT

1

X

ĩ

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

#### 16.8 KM

| SAMPLE NO.   | 2 <b>3</b> 53A | 2456     | 2360A    | 2361A    |
|--------------|----------------|----------|----------|----------|
| COMPOSED OF: | 1/2:2353       | 1/2:2357 | 1/2:2360 | 1/2:2361 |
|              |                | 2358     |          |          |
|              |                | 2359     |          |          |

| COLLECTION<br>DATE | 7/25/69  | 7/23/69  | 7/23/69    | 7/23/69          |
|--------------------|----------|----------|------------|------------------|
| LAT.               | 335-375  | 375-465  | 465-495    | 49 <b>S</b> -51S |
| LONG.              | 69W- 68W | 69W- 67W | 67W- 67W   | 67W- 67W         |
| VOL. OF AIR        | 3.030    | 5.420    | 1.680      | 1.210            |
| (100 SCM)          |          |          |            |                  |
|                    |          |          | PC/100 SCM |                  |
| LAB:               | TLW      | TLW      | TLW        | TLW              |
| SR-90              | 126.000  | 66.100   | 141.000    | 99.100           |
| ZR-95              | 548.000  | 361.000  | 670.000    | 514.000          |
| CE-144             | 2060.000 | 1010.000 | 2270.000   | 1570.000         |
| PB-210             |          | 0.797    |            |                  |
| PD-210             |          | 0.481A   |            |                  |
| PU-238             | 0.837    | 0.418    | 1.017      | 0.657            |
| PU-239             | 1.470    | 0.743    | 1.638      | 1.214            |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

II -

## RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

## 15.2 KM

| SAMPLE NO.<br>Composed of:                                                                         | 2457<br>1/2:2388<br>2395<br>2396<br>2397                                                              | 2458<br>1/4:2385<br>2386<br>2387                                                 | 2476<br>1/4:2385<br>2386<br>2387                                         | 2459<br>1/2:2284<br>2285<br>2384                                   | 2460<br>1/2:2281<br>2282<br>2283                                  | 2461<br>1/2:2315<br>2316<br>2327<br>2330                          |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| MIDPOINT OF:<br>COLLECTION<br>H DATE<br>LAT.<br>LONG.<br>WOL. OF AIR<br>(100 SCM)                  | 7/24/69<br>75N-61N<br>147W-138W<br>12.740                                                             | 7/25/69<br>61N-53N<br>138W-129W<br>3.810                                         | 7/25/69<br>61N-53N<br>138W-129W<br>3∘810                                 | 7/24/69<br>53N-45N<br>129W-117W<br>9.110                           | 7/24/69<br>45N-39N<br>117W-108W<br>8.110                          | 7/25/69<br>39N-29N<br>106W- 94W<br>15.270                         |
|                                                                                                    |                                                                                                       |                                                                                  | PC/100 SCM                                                               |                                                                    |                                                                   |                                                                   |
| LAB:                                                                                               | TLW                                                                                                   | TLW                                                                              | TLW                                                                      | TLW                                                                | TLW                                                               | TLW                                                               |
| SR-90<br>ZR-95<br>CE-144<br>PB-210<br>PO-210<br>PU-238<br>PU-239<br>A:COUNTING EI<br>B:COUNTING EI | 98.300<br>1600.000<br>1880.000<br>0.897<br>0.498<br>0.378<br>1.926<br>RROR IS 20-50<br>RROR IS 51-100 | 82.800<br>1480.000<br>1700.000<br>0.920<br>0.333B<br>0.223<br>1.477<br>₽ERCENT ≠ | 80.600<br>1350.000<br>1650.000<br>0.813A<br>0.380A<br>0.692 ?<br>0.718 ? | 53.200<br>945.000<br>1210.000<br>1.007<br>0.405A<br>0.136<br>0.959 | 19.200<br>328.000<br>383.000<br>1.181<br>0.258A<br>0.042<br>0.314 | 14.700<br>251.000<br>328.000<br>1.254<br>0.3174<br>0.043<br>0.280 |

?:DATA SUSPECT

.....

•

| Т | A | B | L | Ε | 3 | 8 |
|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

## 15.2 KM

| SAMPLE NO.<br>Composed of:1                                                     | 2462<br>/2:2244<br>2317<br>2318                                  | 2463<br>1/2:2241<br>2242<br>2243                               | 2464<br>1/2:2229<br>2230<br>2275<br>2278                        | 2465<br>1/2:2231<br>2232<br>2233                           | 2335A<br>1/2:2335                            | 2466<br>1/2:2332<br>2333<br>2334                                |
|---------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| MIDPOINT OF:<br>COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 7/25/69<br>29N-21N<br>94W- 86W<br>10.730                         | 7/27/69<br>21N-12N<br>86W- 81W<br>9.570                        | 7/25/69<br>12N- 1N<br>81W- 79W<br>11.680                        | 7/23/69<br>1N-11S<br>81W- 78W<br>11.280                    | 7/24/69<br>15S-20S<br>75W- 73W<br>5.000      | 7/24/69<br>20S-29S<br>73W- 69W<br>10.000                        |
|                                                                                 |                                                                  |                                                                | PC/100 SCM                                                      |                                                            |                                              |                                                                 |
| LAB:                                                                            | TLW                                                              | TLW                                                            | TLW                                                             | TLW                                                        | TLW                                          | TLW                                                             |
| SR-90<br>ZR-95<br>CE-144<br>PB-210<br>PO-210<br>PU-238<br>PU-239                | 9.891<br>159.000<br>200.000<br>1.162<br>0.337A<br>0.032<br>0.192 | 4.293<br>76.400<br>98.300<br>1.585<br>0.283A<br>0.014<br>0.078 | 2.362<br>34.700<br>41.800<br>0.924<br>0.157A<br>0.008A<br>0.025 | 1.206<br>14.500<br>19.700<br>0.720<br>*<br>0.003B<br>0.018 | 2.429<br>18.500<br>42.300<br>0.015A<br>0.038 | 9.514<br>61.600<br>144.000<br>1.058<br>0.436A<br>0.059<br>0.117 |
| A:COUNTING ER<br>B:COUNTING ER                                                  |                                                                  |                                                                | *:NOT DETECTABL                                                 | C                                                          |                                              |                                                                 |

?:DATA SUSPECT

-

ί.,

1

#### RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

#### 15.2 KM

| SAMPLE NO. 2352A     | 2467     | 2468     | 2469     |
|----------------------|----------|----------|----------|
| COMPOSED OF:1/2:2352 | 1/2:2378 | 1/2:2376 | 1/2:2374 |
|                      | 2379     | 2377     | 2375     |

| MIDPOINT OF: |          |          |            |          |
|--------------|----------|----------|------------|----------|
| COLLECTION   |          |          |            |          |
| DATE         | 7/25/69  | 7/23/69  | 7/23/69    | 7/23/69  |
| LAT.         | 2.95-335 | 335-405  | 40S-46S    | 46S-51S  |
| LONG.        | 69W- 68W | 69W- 68W | 68W- 67W   | 67W- 67W |
| VOL. OF AIR  | 3.390    | 7.920    | 6.060      | 4.420    |
| (100 SCM)    |          |          |            |          |
| ,            |          |          | PC/100 SCM |          |
| LAB:         | TLW      | TLW      | TLW        | TLW      |
| SR-90        | 54.600   | 22.100   | 94.100     | 135.000  |
| ZR-95        | 259.000  | 109.000  | 491.000    | 682.000  |
| CE-144       | 876.000  | 322.000  | 1550.000   | 2000.000 |
| PB-210       |          | 0.905    | 0.678      | 0.876    |
| P0-210       |          | 0.4244   | 0°4364     | 0.2898   |
| PU-238       | 0.356    | 0.136    | 0.625      | 0.921    |
| PU-239       | 0.607    | 0.229    | 1.067      | 1.546    |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:**DATA SUSPECT •

ΤI 1 ω N

|                                                                    |                                                  |                                          | TABLE                                        | 38                                      |                                                 |                                                 |
|--------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                                                                    |                                                  | RADIOCHEMICAL AN                         | ALYSIS OF JULY                               | 1969 COMPOSITES                         | 5                                               |                                                 |
|                                                                    |                                                  |                                          | 13.7 KM                                      |                                         |                                                 |                                                 |
| SAMPLE NO.<br>COMPOSED OF:                                         | 2470<br>1/2:2380<br>2381<br>2382<br>2383         | 2286A<br>1/2:2286                        | 2471<br>1/2:2287<br>2288<br>2289             | 2369A<br>1/2:2369                       | 2472<br>1/2:2370<br>2371                        | 2473<br>1/2:2372<br>2373                        |
|                                                                    |                                                  |                                          |                                              |                                         |                                                 |                                                 |
| MIDPOINT OF:<br>COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR | 7/25/69<br>61N-50N<br>138W-125W<br>13.380        | 7/24/69<br>50N-47N<br>125W-121W<br>4•250 | 7/24/69<br>47N-41N<br>121W-111W<br>10.770    | 7/23/69<br>375-40S<br>69W- 68W<br>3.600 | 7/23/69<br>40S-46S<br>68W- 67W<br>6.710         | 7/23/69<br>465-515<br>67W- 67W<br>5•440         |
| ፚ (100 SCM)                                                        |                                                  |                                          | PC/100 SCM                                   |                                         |                                                 | 2.440                                           |
| LAB:                                                               | TLW                                              | TLW                                      |                                              |                                         |                                                 |                                                 |
|                                                                    |                                                  | 1 L W                                    | TLW                                          | TLW                                     | TLW                                             | TLW                                             |
| SR-90<br>ZR-95<br>CL-144<br>PB-210<br>PD-210                       | 62.300<br>1030.000<br>1240.000<br>0.985<br>0.441 | 9.612<br>166.000<br>222.000              | 3.319<br>56.400<br>71.200<br>1.081<br>0.141B | 9.979<br>- 53.700<br>151.000            | 18.700<br>101.000<br>307.000<br>0.900<br>0.378A | 52.800<br>257.000<br>750.000<br>0.876<br>0.479A |
| ₽U-238<br>₽U-239                                                   | 0.149                                            | 0.028A<br>0.193                          | 0.012A<br>0.061                              | 0.054<br>0.113                          | 0.142                                           | 0.334<br>0.584                                  |

TADIE 20



## RADIOCHEMICAL ANALYSIS OF JULY 1969 COMPOSITES

12.2 KM

| SAMPLE NU. 2474      |  |
|----------------------|--|
| COMPOSED OF:1/2:2392 |  |
| 2393                 |  |
| 2394                 |  |
|                      |  |

| MIDPOINT OF:<br>COLLECTION<br>DATE<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 7/24/69<br>75N-65N<br>146W-143W<br>13.690     |
|---------------------------------------------------------------------------------|-----------------------------------------------|
| LAB:                                                                            | TLW                                           |
| SR-90                                                                           | 64.700                                        |
| ZR-95                                                                           | 1190.000                                      |
| CE-144                                                                          | 1410.000                                      |
| PB-210                                                                          |                                               |
| PO-210                                                                          | 0.915                                         |
| PU-238                                                                          | 0.493                                         |
|                                                                                 | 0.177                                         |
| PU-239                                                                          | 1.304                                         |
| A:COUNTING ERI<br>B:COUNTING ERI                                                | ROR IS 20-50 PERCENT<br>ROR IS 51-100 PERCENT |

?:DATA SUSPECT

C + 140 - C

ΤI

34 4

1 , 4 \*:NOT DETECTABLE

PC/100 SCM

## ALTITUDE 19.2 KM

| SAMPLE NO.   | 2747      | 2748           | 2749       | 2764      | 2763      | 2762      |
|--------------|-----------|----------------|------------|-----------|-----------|-----------|
| FLIGHT NO.   | 288       | 288            | 288        | 296       | 296       | 296       |
| DATE         | 10/13/69  | 10/13/69       | 10/13/69   | 10/14/69  | 10/14/69  | 10/14/69  |
| TIME         | 0008-0044 | 0044-0117      | 0117-0145  | 0022-0110 | 0002-0022 | 2332-0002 |
| LAT          | 75N-71N   | 71N-68N        | 68N-65N    | 65N-61N   | 61N-59N   | 59N-56N   |
| LONG         | 143W-143W | 144W-143W      | 146W-144W  | 147W-138W | 138W-136W | 136W-132W |
| VOL. OF AIR  | 2 . 90    | 2.70           | 2.53       | 4.23      | 1.76      | 2.66      |
| (100 SCM)    |           |                |            |           |           | 2000      |
| GROSS GAMMA/ | 466。      | <b>4</b> 8500。 | 23600。     | 920000。   | 807000。   | 639000。   |
| M/100 SCM    |           | ,              |            |           |           | 00,0000   |
| H COUNT DATE | 12/05/69  | 12/05/69       | 12/05/69   | 12/09/69  | 12/09/69  | 11/21/69  |
| H            |           |                |            |           |           | 11/21/0/  |
| 1            |           |                |            |           |           |           |
| ω            |           |                | PC/100 SCM |           |           |           |
| ῶ ZR-95      | 163       | 18400          | 8160       | 337000    | 302000    | 257000    |
|              |           |                |            | 55.000    | 502000    | 227000    |
|              |           |                |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA** SUSPECT

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

seid.

|   | SAMPLE ND.<br>FLIGHT ND.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR | 2761<br>296<br>10/14/69<br>2304-2332<br>56N-53N<br>132W-129W<br>2°45 | 2760<br>296<br>10/14/69<br>2230~2304<br>53N~50N<br>129W-125W<br>2°80 | 2494<br>292<br>10/17/69<br>1830~1906<br>50N~47N<br>125₩-121W<br>3₀11 | 2495<br>292<br>10/17/69<br>1906-1932<br>47N-45N<br>121W-117W<br>2.27 | 2496<br>292<br>10/17/69<br>1932-1957<br>45N-43N<br>117W-114W<br>2°23 | 2497<br>292<br>10/17/69<br>1957-2022<br>43N-41N<br>114W-111W |
|---|--------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
|   | (100 SCM)<br>GROSS GAMMA/<br>M/100 SCM                                   | 165000.                                                              | 211000.                                                              | 140000 o                                                             | 367000。                                                              | 260000.                                                              | 2°22<br>131000°                                              |
|   | COUNT DATE                                                               | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                     |
| 1 | ZR-95                                                                    | 28100                                                                | 73900                                                                | PC/100 SCM<br>49000                                                  | 135000                                                               | 96000                                                                | 48300                                                        |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

\*:NOT DETECTABLE

II -

36

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR~95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>IIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2498<br>292<br>10/17/69<br>2022-2045<br>41N-39N<br>111W-108W<br>2.05 | 2499<br>292<br>10/17/69<br>2045-2122<br>39N-35N<br>108W-106W<br>3.30 | 2525<br>298<br>10/13/69<br>2145-2221<br>39N-35N<br>108W-106W<br>3∘35 | 2514<br>293<br>10/13/69<br>2055-2134<br>35N-33N<br>106W-102W<br>3.55 | 2513<br>293<br>10/13/69<br>2022-2055<br>33N-31N<br>102W-98W<br>3.00 | 2512<br>293<br>10/13/69<br>1952-2022<br>31N-29N<br>98W- 94W<br>2.73 |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| GROSS GAMMA/<br>M/100 SCM                                                             | 48800.                                                               | 70900.                                                               | 2670.                                                                | 848。                                                                 | 493 <sub>°</sub>                                                    | 897。                                                                |
| COUNT DATE                                                                            | 12/05/69                                                             | 12/05/69                                                             | 11/13/69                                                             | 12/01/69                                                             | 12/01/69                                                            | 12/01/69                                                            |
| ZR-95                                                                                 | 11400                                                                | 16600                                                                | PC/100 SCM<br>435                                                    | 216                                                                  | 134                                                                 | 248                                                                 |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

**\*:NOT DETECTABLE** 

•

II -

37

|             |     |       | TABLE 3C       |    |         |      |
|-------------|-----|-------|----------------|----|---------|------|
| TOTAL GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

1.11

. .

: •

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2511<br>293<br>10/13/69<br>1921-1952<br>29N-26N<br>94W- 91W<br>2.82 | 2510<br>293<br>10/13/69<br>1855-1921<br>26N-24N<br>91W- 89W<br>2.36 | 2637<br>291<br>10/16/69<br>1723-1759<br>24N-21N<br>89W- 86W<br>3.38 | 2638<br>291<br>10/16/69<br>1759-1832<br>21N-18N<br>86W- 84W<br>3.08 | 2639<br>291<br>10/16/69<br>1832-1901<br>18N-15N<br>84W- 82W<br>2.71 | 2640<br>291<br>10/16/69<br>1901-1929<br>15N-12N<br>82W- 81W<br>2°65 |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| H GROSS GAMMA/                                                                        | <b>97</b> 9。                                                        | 1120.                                                               | 1060.                                                               | 990.                                                                | 1210.                                                               | 1020.                                                               |
| I COUNT DATE<br>ω<br>ω                                                                | 12/01/69                                                            | 11/12/69                                                            | 11/19/69                                                            | 11/19/69                                                            | 11/19/69                                                            | 11/19/69                                                            |
| ZR-95                                                                                 | 267                                                                 | 244                                                                 | PC/100 SCM<br>239                                                   | 223                                                                 | 291                                                                 | 246                                                                 |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

.

\*:NOT DETECTABLE

|         |      |     |       | TABLE 3C       |    |         |      |
|---------|------|-----|-------|----------------|----|---------|------|
| TOTAL G | AMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

| SAMPLE ND.<br>Flight ND. | 2641<br>291          | 2740<br>291         | 2739<br>291         | 2738 291            | 2737<br>291         | 2736                |
|--------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| DATE                     | 10/16/69             | 10/13/69            | 10/13/69            | 10/13/69            | 10/13/69            | 291<br>10/13/69     |
| TIME<br>LAT.             | 1929-2000<br>12N- 9N | 1850-1922<br>9N- 5N | 1815-1850<br>5N- 1N | 1740-1815<br>1N- 3S | 1703-1740<br>35- 75 | 1626-1703<br>7S-11S |
| LONG.                    | 81W- 79W             | 80W- 79W            | 80W- 80W            | 81W- 80W            | 81W- 80W            | 80W- 78W            |
| VOL. OF AIR<br>(100 SCM) | 2.93                 | 2.90                | 3.24                | 3.24                | 3.38                | 3.51                |
| H GROSS GAMMA/           | 809.                 | 772。                | 639。                | 562.                | 648.                | 641.                |
| COUNT DATE               | 11/19/69             | 12/04/69            | 11/23/69            | 11/22/69            | 11/22/69            | 11/22/69            |
|                          |                      |                     | PC/100 SCM          | 1                   |                     |                     |
| ZR-95                    | 202                  | 215                 | 153                 | 135                 | 140                 | 116                 |
|                          |                      |                     |                     |                     |                     |                     |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

|                |           |           | ALITIOUE 19.2 | Λ <b>Π</b> |           |           |
|----------------|-----------|-----------|---------------|------------|-----------|-----------|
| SAMPLE NO.     | 2615      | 2616      | 2617          | 2618       | 2619      | 2598      |
| FLIGHT NO.     | 286       | 286       | 286           | 286        | 286       | 289       |
| DATE           | 10/15/69  | 10/15/69  | 10/15/69      | 10/15/69   | 10/15/69  | 10/14/69  |
| TIME           | 1552-1644 | 1644-1712 | 1712-1726     | 1726-1803  | 1803-1840 | 1852-1925 |
| LAT。           | 155-205   | 205-235   | 235-265       | 265-295    | 295-335   | 335-375   |
| LONG.          | 76W- 73W  | 73W- 72W  | 72W- 71W      | 71W- 69W   | 69W- 68W  | 69W- 68W  |
| VOL. OF AIR    | 4.86      | 2.70      | 1.32          | 3.55       | 3.44      | 3.02      |
| (100 SCM)      |           |           |               |            |           |           |
| H GROSS GAMMA/ | 844。      | 685.      | 1230。         | 625.       | 721。      | 821.      |
| ☐ M/100 SCM    |           |           |               |            |           |           |
| I COUNT DATE   | 11/18/69  | 11/18/69  | 11/18/69      | 11/18/69   | 11/18/69  | 11/17/69  |
| 40             |           |           |               |            |           |           |
| 3              |           |           |               |            |           |           |
|                |           |           | PC/100 SCM    |            |           |           |
| ZR-95          | 151       | 123       | 210           | 107        | 115       | 137       |
|                |           |           |               |            |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

. 14 ))

TOTAL GAMMA AND ZR-95 CONCENTRATIONS IN OCTOBER 1969

## ALTITUDE 19-2 KM

TABLE 3C

. ·

|       |         |     |       | TABLE 3C       |            |      |
|-------|---------|-----|-------|----------------|------------|------|
| TOTAL | . GAMMA | AND | ZR-95 | CONCENTRATIONS | IN OCTOBER | 1969 |

| SAMPLE NO.                | 2597      | 2596      | 2595      | 2594             | 2593      |
|---------------------------|-----------|-----------|-----------|------------------|-----------|
| FLIGHT NO.                | 289       | 289       | 289       | 289              | 289       |
| DATE                      | 10/14/69  | 10/14/69  | 10/14/69  | 10/14/69         | 10/14/69  |
| TIME                      | 1825-1852 | 1800-1825 | 1735-1800 | 1711-1735        | 1655-1711 |
| LAT.                      | 375-405   | 40S-43S   | 435-465   | 46 <b>S</b> -49S | 495-515   |
| LONG.                     | 69W- 68W  | 68W- 67W  | 67W- 67W  | 67W- 67W         | 67W- 67W  |
| VOL. OF AIR<br>(100 SCM)  | 2.40      | 2.06      | 2.06      | 1.91             | 1.31      |
| GRDSS GAMMA/<br>M/100 SCM | 729.      | 1040。     | 966.      | 1030.            | 1110.     |
| COUNT DATE                | 11/17/69  | 11/17/69  | 11/17/69  | 11/17/69         | 11/17/69  |
|                           |           |           |           |                  |           |

|       |     |     | PC/100 SCM |     |     |  |
|-------|-----|-----|------------|-----|-----|--|
| ZR-95 | 115 | 177 | 157        | 172 | 182 |  |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

\*:NOT DETECTABLE

- 41

H

|       | <b>.</b> |     |       | TABLE 3C       |    |         |      |
|-------|----------|-----|-------|----------------|----|---------|------|
| IUIAL | GAMMA    | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

- -

· · · .

È.

| н  | SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VDL. OF AIR<br>(100 SCM)<br>GROSS GAMMA/ | 2483<br>293<br>10/16/69<br>1926-2001<br>34N-33N<br>106W-102W<br>3.64<br>4070. | 2505<br>293<br>10/13/69<br>1637-1642<br>33N-33N<br>102W-102W<br>0.54<br>2440. | 2506<br>293<br>10/13/69<br>1642-1718<br>33N-31N<br>102W- 98W<br>3.90 | 2507<br>293<br>10/13/69<br>1718-1747<br>31N-29N<br>98W-94W<br>3.14 | 2508<br>293<br>10/13/69<br>1747-1826<br>29N-26N<br>94W-91W<br>4.23 | 2509<br>293<br>10/13/69<br>1826-1848<br>26N-24N<br>91W- 89W<br>2•38 |
|----|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| I  | M/100 SCM                                                                                             |                                                                               | 24400                                                                         | 1030。                                                                | 1060.                                                              | 1030.                                                              | 1230.                                                               |
| 42 | COUNT DATE                                                                                            | 12/05/69                                                                      | 11/12/69                                                                      | 11/12/69                                                             | 11/12/69                                                           | 11/12/69                                                           | 11/12/69                                                            |
|    | ZR-95                                                                                                 | 966                                                                           | 424                                                                           | PC/100 SCM<br>238                                                    | 252                                                                | 231                                                                | 293                                                                 |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

. . .

**\*:NOT DETECTABLE** 

**~** \*

 $\mathbb{S}^{n}$ 

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2636<br>291<br>10/16/69<br>1645-1715<br>24N-21N<br>89W- 86W<br>3.53 | 2635<br>291<br>10/16/69<br>1613-1645<br>21N-18N<br>86W- 84W<br>3.77 | 2634<br>291<br>10/16/69<br>1545-1613<br>18N-15N<br>84W- 82W<br>3.21 | 2633<br>291<br>10/16/69<br>1515-1545<br>15N-12N<br>82W- 81W<br>3.45 | 2729<br>289<br>10/17/69<br>1631-1700<br>12N-9N<br>81W-79W<br>3.36 | 2728<br>289<br>10/17/69<br>1555-1631<br>9N- 5N<br>79W- 79W<br>4.14 |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| GROSS GAMMA/                                                                          | 980。                                                                | 833.                                                                | 1160.                                                               | 846.                                                                | 714。                                                              | 568.                                                               |
| COUNT DATE                                                                            | 11/19/69                                                            | 11/19/69                                                            | 11/19/69                                                            | 11/19/69                                                            | 11/22/69                                                          | 11/22/69                                                           |
| ZR-95                                                                                 | 249                                                                 | 196                                                                 | PC/100 SCM<br>291                                                   | 200                                                                 | 174                                                               | 138                                                                |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

\*:NOT DETECTABLE

•

.

| TABLE 3C |       |     |       |                |    |         |      |
|----------|-------|-----|-------|----------------|----|---------|------|
| TOTAL    | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

ian Marina

Ξ,

| SAMPLE NO.     | 2732      | 2733      | 2734       | 2603      | 2735      | 2604      |
|----------------|-----------|-----------|------------|-----------|-----------|-----------|
| FLIGHT NO.     | 291       | 291       | 291        | 289       | 291       | 289       |
| DATE           | 10/13/69  | 10/13/69  | 10/13/69   | 10/12/69  | 10/13/69  | 10/12/69  |
| TIME           | 1352-1426 | 1426-1503 | 1503-1542  | 1551-1631 | 1542-1619 | 1631-1708 |
| LAT.           | 5N- 1N    | 1N- 35    | 35- 7S     | 7S-11S    | 7S-11S    | 11S-15S   |
| LONG.          | 80W- 80W  | 81W- 80W  | 81W- 80W   | 80W- 78W  | 80W- 78W  | 78W- 76W  |
| VOL. OF AIR    | 4.02      | 4.26      | 4.49       | 4.78      | 4.31      | 4.42      |
| (100 SCM)      |           |           |            |           |           |           |
| ¦ GROSS GAMMA/ | 463°      | 404.      | 419.       | 404.      | 457。      | 493.      |
| M/100 SCM      |           |           |            |           |           |           |
| COUNT DATE     | 11/22/69  | 11/22/69  | 11/22/69   | 11/17/69  | 11/22/69  | 11/17/69  |
| 44             |           |           |            |           |           |           |
|                |           |           | PC/100 SCM |           |           |           |
| ZR-95          | 113       | 89        | 91         | 77        | 85        | 84        |
|                |           |           |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

, **r** 

|         |      |     |       | TABLE 3C       |    |         |      |
|---------|------|-----|-------|----------------|----|---------|------|
| TOTAL G | AMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

| SAMPLE NO.<br>FLIGHT NO.  | 2605<br>289          | 2614<br>286          | 2606                 | 2613                 | 2607                | 2612                |
|---------------------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|
| DATE                      | 10/12/69             | 10/15/69             | 289<br>10/12/69      | 286<br>10/15/69      | 289<br>10/12∤69     | 286<br>10/15/69     |
| TIME<br>LAT.              | 1708-1756<br>15S-20S | 1458-1541<br>14S-20S | 1756-1827<br>205-235 | 1434-1458<br>205-235 | 1827-1853           | 1405-1434           |
| LONG.                     | 76W- 74W             | 75W- 73W             | 74W- 72W             | 73W- 72W             | 235-265<br>72W- 71W | 235-265<br>72W- 71W |
| VOL. OF AIR<br>(100 SCM)  | 5.62                 | 5.17                 | 3.55                 | 2.88                 | 2.93                | 3.48                |
| GROSS GAMMA/<br>M/loo scm | 826。                 | 584.                 | 738.                 | 444.                 | 717.                | 514.                |
| COUNT DATE                | 11/17/69             | 11/18/69             | 11/17/69             | 11/18/69             | 11/18/69            | 11/18/69            |
| 30.05                     |                      |                      | PC/100 SCM           |                      |                     |                     |
| ZR-95                     | 151                  | 102                  | 127                  | 80                   | 128                 | 82                  |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

\*:NOT DETECTABLE

II - 45

|                           |           |           | ALTIODE 10.5 | KF1       |
|---------------------------|-----------|-----------|--------------|-----------|
| SAMPLE NO.                | 2608      | 2611      | 2609         | 2563      |
| FLIGHT NO.                | 289       | 286       | 289          | 289       |
| DATE                      | 10/12/69  | 10/15/69  | 10/12/69     | 10/15/69  |
| TIME                      | 1853-1919 | 1338-1405 | 1919-1941    | 1633-1706 |
| LAT.                      | 265-295   | 265-295   | 295-325      | 295-335   |
| LONG.                     | 71W- 69W  | 71W- 69W  | 69W- 68W     | 69W- 58W  |
| VOL. OF AIR<br>(100 SCM)  | 2.93      | 2.99      | 2.48         | 3-81      |
| GROSS GAMMA/<br>M/100 SCM | 570.      | 632.      | 5.           | 362.      |
| COUNT DATE                | 11/18/69  | 11/18/69  | 11/18/69     | 12/01/69  |
|                           |           |           | PC/100 SCM   | 4         |
| ZR-95                     | 112       | 107       | *            | 63        |
|                           |           |           |              |           |

ALTITUDE 18.3 KM

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

**\*:NOT DETECTABLE** 

- 46

•

ЦЦ

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

## ALTITUDE 16.8 KM

| II - 47 | SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2746<br>288<br>10/13/69<br>2331-0004<br>75N-71N<br>143W-143W<br>4.81 | 2745<br>288<br>10/13/69<br>2304-2331<br>71N-68N<br>144W-143W<br>3.90 | 2744<br>288<br>10/13/69<br>2237-2304<br>68N-65N<br>146W-144W<br>4.09 | 2743<br>288<br>10/13/69<br>2147-2237<br>65N-61N<br>146W-138W<br>7.13 | 2756<br>296<br>10/14/69<br>2013-2033<br>61N-59N<br>138W-136W<br>2.80 | 2757<br>296<br>10/14/69<br>2033-2105<br>59N-56N<br>136W-132W<br>4.62 |
|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|         | GROSS GAMMA/<br>M/100 SCM<br>COUNT DATE                                               | 1000.                                                                | 3210.                                                                | 4520°                                                                | 127000.                                                              | 525000°                                                              | 46300.                                                               |
|         |                                                                                       | 11/22/69                                                             | 12/03/69                                                             | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                             | 12/05/69                                                             |
|         | ZR-95                                                                                 | 432                                                                  | 445                                                                  | PC/100 SCM<br>1600                                                   | 46500                                                                | 200000                                                               | 18400                                                                |
|         | A:COUNTING ER<br>B:COUNTING ER                                                        | ROR IS 20-50<br>ROR IS 51-100                                        | PERCENT                                                              | *:NOT DETECTABL                                                      | E                                                                    |                                                                      |                                                                      |

**?:**DATA SUSPECT

|       |       |     |      | TABLE 3C       |    |         |      |
|-------|-------|-----|------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

•

## ALTITUDE 16.8 KM

يون موجد محمد الم

E

| SAMPLE NO.     | 2758      | 2759      | 2493          | 2492        | 2491      | 2490      |
|----------------|-----------|-----------|---------------|-------------|-----------|-----------|
| FLIGHT NO.     | 296       | 296       | 292           | 292         | 292       | 292       |
| DATE           | 10/14/69  | 10/14/69  | 10/17/69      | 10/17/69    | 10/17/69  | 10/17/69  |
| TIME           | 2105-2135 | 2135-2210 | 1743-1820     | 1714-1743   | 1645-1714 | 1619-1645 |
| LAT.           | 56N-53N   | 53N-50N   | 50N-47N       | 47N-45N     | 45N-43N.  | 43N-41N   |
| LONG.          | 132W-129W | 129W-125W | 125W-121W     | 121W-117W   | 117W-114W | 114W-111W |
| H VOL. OF AIR  | 4.28      | 4.99      | 5.28          | 4.14        | 4.16      | 3.69      |
| (100 SCM)      |           |           |               |             |           |           |
| GROSS GAMMA/   | 170000。   | 86200.    | 6420.         | 1270.       | 1250.     | 1170.     |
| A M/100 SCM    |           |           |               |             |           |           |
| COUNT DATE     | 12/05/69  | 12/05/69  | 11/12/69      | 11/12/69    | 11/12/69  | 11/12/69  |
|                |           |           |               |             |           |           |
|                |           |           | PC/100 SCM    | 4           |           |           |
| ZR-95          | 57700     | 33100     | 1320          | 471         | 462       | 451       |
|                |           |           |               |             |           |           |
| A - COUNTING C |           | OFREENT   | +-NOT DETECTA | 3. <b>F</b> |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*: NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

. . .

•

• .

## ALTITUDE 16.8 KM

|    | SAMPLE NO.                | 2489                              | 2488                 | 2482<br>293          | 2549<br>298          | 2548<br>298          | 2547<br>298          |
|----|---------------------------|-----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|    | FLIGHT NO.<br>DATE        | 292<br>10/17/69                   | 292<br>10/17/69      | 10/16/69             | 10/14/69             | 10/14/69             | 10/14/69             |
|    | TIME<br>LAT.              | 1555-1619<br>41N-39N              | 1534-1555<br>39N-36N | 1847-1919<br>39N-35N | 2051-2130<br>35N-33N | 2016-2051<br>33N-31N | 1945-2016<br>31N-29N |
|    | LDNG.                     | 111W-108W                         | 108W-108W            | 108W-107W            | 106W-102W<br>6.00    | 102W- 98W<br>5.65    | 98W- 94W<br>5.03     |
| ΤI | VOL. OF AIR<br>(100 SCM)  | 3.49                              | 3.27                 | 4.62                 |                      |                      |                      |
| I  | GRDSS GAMMA/<br>M/100 SCM | 1280.                             | 642.                 | 939。                 | 930.                 | 1320.                | 2370.                |
| 49 | COUNT DATE                | 11/12/69                          | 11/12/69             | 11/10/69             | 11/14/69             | 11/14/69             | 11/14/69             |
|    |                           |                                   |                      |                      |                      |                      |                      |
|    | ZR-95                     | 263                               | 144                  | PC/100 SCM<br>183    | 170                  | 205                  | 323                  |
|    | A:COUNTING EF             | ROR IS 20-50                      | PERCENT              | *:NOT DETECTAR       | 3LE                  |                      |                      |
|    |                           | A COUNTING ENROR IS ED JO TEROCAT |                      |                      |                      |                      |                      |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

## ALTITUDE 16.8 KM

اند. محمد م

۰.

٠.

|        | SAMPLE NO.               | 2546         | 2545      | 2721          | 2722      | 2723      | 2724      |
|--------|--------------------------|--------------|-----------|---------------|-----------|-----------|-----------|
|        | FLIGHT NO.               | 298          | 298       | 291           | 291       | 291       | 291       |
|        | DATE                     | 10/14/69     | 10/14/69  | 10/15/69      | 10/15/69  | 10/15/69  | 10/15/69  |
|        | TIME                     | 1909-1945    | 1845-1909 | 2017-2051     | 2051-2124 | 2124-2152 | 2152-2221 |
|        | LAT.                     | 29N-26N      | 26N-24N   | 24N-21N       | 21N-18N   | 18N-15N   | 15N-12N   |
|        | LONG.                    | 94W- 91W     | 91W- 89W  | 89W- 86W      | 86W- 84W  | 84W- 82W  | 82W- 81W  |
| ПI     | VOL. OF AIR<br>(100 SCM) | 5.86         | 3.90      | 5.47          | 5,38      | 4.66      | 4.85      |
| 1      | GROSS GAMMA/             | 2580.        | 6130.     | 10700.        | 7810.     | 180.      | 245。      |
| 5<br>0 |                          | 11/14/69     | 11/14/69  | 12/01/69      | 11/15/69  | 11/22/69  | 11/22/69  |
|        |                          |              |           | PC/100 SCI    | W         |           |           |
|        | ZR-95                    | 373          | 730       | 2030          | 1010      | 34        | 49        |
|        | A:COUNTING EF            | ROR IS 20-50 | PERCENT   | *:NOT DETECTA | BLE       |           |           |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

.

. . .

1

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

## ALTITUDE 16.8 KM

|    | SAMPLE NO.   | 2730      | 2652      | 2715       | 2651      | 2714      | 2650      |
|----|--------------|-----------|-----------|------------|-----------|-----------|-----------|
|    | FLIGHT NO.   | 289       | 286       | 291        | 286       | 291       | 286       |
|    | DATE         | 10/17/69  | 10/16/69  | 10/13/69   | 10/16/69  | 10/13/69  | 10/16/69  |
|    | TIME         | 1704-1733 | 1933-1955 | 1907-1942  | 1859-1933 | 1830-1907 | 1824-1859 |
|    | LAT.         | 12N- 9N   | 8N- 5N    | 9N- 5N     | 5N- 1N    | 5N- 1N    | 1N- 3S    |
|    | LONG.        | 81W- 79W  | 80W- 79W  | 80W- 79W   | 80W- 80W  | 80W- 80W  | 81W- 80W  |
|    | VOL. OF AIR  | 4.54      | 3.50      | 5.74       | 5.41      | 6.26      | 5.57      |
|    | (100 SCM)    |           |           |            |           |           |           |
|    | GROSS GAMMA/ | 405。      | 160.      | 103.       | 99.       | 79.       | 101.      |
| н  | M/100 SCM    |           |           |            |           |           |           |
|    | COUNT DATE   | 11/21/69  | 11/21/69  | 11/22/69   | 11/21/69  | 11/21/69  | 11/21/69  |
|    |              |           |           |            |           |           |           |
| 51 |              |           |           |            |           |           |           |
|    |              |           |           | PC/100 SCM | 4         |           |           |
|    | ZR-95        | 87        | 35        | 22         | 19        | 17        | 21        |
|    |              |           |           |            |           |           |           |
|    |              |           |           |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

**\*:NOT DETECTABLE** 

|    |                                    |              |           | ALILIUDE 10.8  | К.М.      |           |           |
|----|------------------------------------|--------------|-----------|----------------|-----------|-----------|-----------|
|    | SAMPLE ND.                         | 2713         | 2649      | 2712           | 2648      | 2711      | 2647      |
|    | FLIGHT NO.                         | 291          | 286       | 291            | 286       | 291       | 286       |
|    | DATE                               | 10/13/69     | 10/16/69  | 10/13/69       | 10/16/69  | 10/13/69  | 10/16/69  |
|    | TIME                               | 1752-1830    | 1746-1824 | 1714-1752      | 1657-1746 | 1626-1714 | 1628-1657 |
|    | LAT.                               | 1N- 3S       | 35- 75    | 35- 75         | 7S-12S    | 7S-11S    | 12S-15S   |
|    | LONG.                              | 81W- 80W     | 81W- 80W  | 81W- 80W       | 80W- 78W  | 80W- 78W  | 78W- 77W  |
|    | VOL. OF AIR                        | 6.43         | 6.01      | 6.55           | 7.93      | 7.99      | 4.66      |
|    | (100 SCM)                          |              |           |                |           |           |           |
| НЦ | GROSS GAMMA/                       | 92.          | 290.      | 86。            | 60.       | 125.      | 80.       |
|    | M/100 SCM                          |              |           |                |           |           |           |
| 1  | COUNT DATE                         | 11/22/69     | 11/21/69  | 11/22/69       | 11/21/69  | 11/22/69  | 11/21/69  |
| 52 |                                    |              |           |                |           |           |           |
|    |                                    |              |           | PC/100 SCM     |           |           |           |
|    | ZR-95                              | 18           | 47        | 16             | 10        | 21        | 9         |
|    |                                    |              |           |                |           |           |           |
|    | A:COUNTING ER                      | ROR IS 20-50 | PERCENT   | *:NOT DETECTAB | LF        |           |           |
|    | B:COUNTING ERROR IS 51-100 PERCENT |              |           |                |           |           |           |
|    |                                    |              |           |                |           |           |           |

ALTITUDE 16 8 KM

. مرتب **مد**ر ا

. . .

•

**?:DATA SUSPECT** 

• ,

· .

.

|             |     |       | TABLE 3C       |            |      |
|-------------|-----|-------|----------------|------------|------|
| TOTAL GAMMA | AND | ZR-95 | CONCENTRATIONS | IN OCTOBER | 1969 |

## ALTITUDE 16.8 KM

| SAMPLE NO.     | 2582      | 2646      | 2583       | 2645      | 2584      | 2644      |
|----------------|-----------|-----------|------------|-----------|-----------|-----------|
| FLIGHT NO.     | 289       | 286       | 289        | 286       | 289       | 286       |
| DATE           | 10/13/69  | 10/16/69  | 10/13/69   | 10/16/69  | 10/13/69  | 10/16/69  |
| TIME           | 1636-1727 | 1538-1628 | 1727-1753  | 1509-1538 | 1753-1820 | 1439-1509 |
| LAT.           | 155-205   | 15S-20S   | 205-235    | 205-235   | 235-265   | 235-265   |
| LONG.          | 76W- 73W  | 77W- 74W  | 73W- 72W   | 74W- 73W  | 72W- 71W  | 73W- 71W  |
| VOL. OF AIR    | 8.31      | 8.15      | 4.26       | 4.80      | 4.35      | 4 - 83    |
| (100 SCM)      | *         |           |            |           |           |           |
| H GRUSS GAMMA/ | 91.       | 15.       | 55.        | 42.       | 80.       | 88.       |
| H M/100 SCM    |           |           |            |           |           |           |
| I COUNT DATE   | 11/15/69  | 11/21/69  | 11/15/69   | 11/21/69  | 11/15/69  | 11/21/69  |
| л<br>w         |           |           |            |           |           |           |
| ω.             |           |           | PC/100 SCM |           |           |           |
| ZR-95          | 15        | 67        | 9          | 4         | 13        | 10        |
|                |           |           |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

|             |                                                                                                       |                                                                     |                                                                     | HEITIODE TO'O K                                                     | M                                                                  |                                                                     |                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
|             | SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM)<br>GRDSS GAMMA/ | 2585<br>289<br>10/13/69<br>1820-1848<br>26S-29S<br>71W- 70W<br>4.45 | 2643<br>286<br>10/16/69<br>1407-1439<br>265-295<br>71W- 69W<br>5.01 | 2586<br>289<br>10/13/69<br>1848-1923<br>29S-33S<br>70W- 69W<br>5.57 | 2562<br>289<br>10/15/69<br>1525-1601<br>335-375<br>69W-58W<br>5.48 | 2588<br>289<br>10/14/69<br>1431-1500<br>375-40S<br>69W- 68W<br>4.12 | 2589<br>289<br>10/14/69<br>1500-1525<br>40S-43S<br>68W- 67W<br>3.50 |
| H<br>H<br>- | M/100 SCM                                                                                             | 153.                                                                | 147.                                                                | 294。                                                                | 651.                                                               | 944.                                                                | 991.                                                                |
| 1<br>54     | COUNT DATE                                                                                            | 11/17/69                                                            | 11/21/69                                                            | 11/17/69                                                            | 12/01/69                                                           | 11/17/69                                                            | 11/17/69                                                            |
|             | ZR-95                                                                                                 | 26                                                                  | 25                                                                  | PC/100 SCM<br>52                                                    | 119                                                                | 158                                                                 | 170                                                                 |
|             | A:COUNTING FRI                                                                                        | ROR IS 20-EO                                                        |                                                                     |                                                                     |                                                                    |                                                                     |                                                                     |

## ALTITUDE 16.8 KM

. . .

2.2

Ξ,

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT **?:**DATA SUSPECT

. . .

\*:NOT DETECTABLE

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

## ALTITUDE 16.8 KM

| SAMPLE NO.   | 2590      | 2591      | 2592       |
|--------------|-----------|-----------|------------|
| FLIGHT NO.   | 289       | 289       | 289        |
| DATE         | 10/14/69  | 10/14/69  | 10/14/69   |
| TIME         | 1525-1551 | 1551-1617 | 1618-1634  |
| LAT.         | 43S-46S   | 46S-49S   | 495-515    |
| LONG.        | 67W- 67W  | 67W- 67W  | 67W- 67W   |
| VOL. OF AIR  | 3.54      | 3.54      | 2.18       |
| (100 SCM)    |           |           |            |
| GROSS GAMMA/ | 1040.     | 1100.     | 1070.      |
| M/100 SCM    |           |           |            |
| COUNT DATE   | 11/17/69  | 11/17/69  | 11/17/69   |
|              |           |           |            |
|              |           |           | PC/100 SCM |
| ZR-95        | 178       | 186       | 184        |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

i . σ

HH

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

•

-

|         | SAMPLE NO.<br>FLIGHT NO. | 2772<br>296  | 2773<br>296 | 2774                          | 2790              | 2789      | 2788              |
|---------|--------------------------|--------------|-------------|-------------------------------|-------------------|-----------|-------------------|
|         | DATE                     | 10/13/69     |             | 296                           | 288               | 288       | 288               |
| L       | TIME                     |              | 10/13/69    | 10/13/69                      | 10/14/69          | 10/14/69  | 10/14/69          |
|         |                          | 22242302     | 2302-2330   | 23302359                      | 004 <b>7</b> 0125 | 0028-0047 | 23590028          |
|         | LATa                     | 75N-71N      | 71N-68N     | 68N-65N                       | 65N-61N           | 61N-59N   | 59N-56N           |
| <b></b> | LONG.                    | 143W-143W    | 144W-143W   | 146W-144W                     | 144W-139W         | 139W-136W | 136W-132W         |
|         | /OL. OF AIR<br>(100 SCM) | 7.31         | 5.44        | 5.50                          | 7.52              | 3.84      | 5.84              |
| ψ.      | GROSS GAMMA/             | 1420.        | 5990.       | 2220。                         | 1640.             | 654。      | 1280 <sub>°</sub> |
|         | COUNT DATE               | 11/15/69     | 11/15/69    | 11/15/69                      | 11/15/69          | 11/21/69  | 11/15/69          |
| Z       | <u>1</u> R-95            | 378          | 1400        | PC/100 SCM<br>621             | 424               | 216       | 334 、             |
| ۵       | COUNTING ER              | ROR IS 20-50 | PERCENT     | <b>*:</b> ΝΩΤ <u>DETECTAB</u> | F                 |           |                   |

B:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT 7:DATA SUSPECT

. . .

**\*:NOT DETECTABLE** 

.

## ALTITUDE 15.2 KM

| SAMPLE NO.                               | 2787         | 2786      | 2533           | 2532      | 2531      | 2530      |
|------------------------------------------|--------------|-----------|----------------|-----------|-----------|-----------|
| FLIGHT ND.                               | 288          | 288       | 293            | 293       | 293       | 293       |
| DATE                                     | 10/14/69     | 10/14/69  | 10/14/69       | 10/14/69  | 10/14/69  | 10/14/69  |
| TIME                                     | 2328-2359    | 2255-2328 | 1859-1941      | 1827-1859 | 1759-1827 | 1731-1759 |
| LAT.                                     | 56N-53N      | 53N-50N   | 50N-47N        | 47N-45N   | 45N-43N   | 43N-41N   |
| LONG.                                    | 132W-129W    | 129W-125W | 125W-121W      | 121W-117W | 117W-114W | 114W-111W |
| H VOL. OF AIR                            | 6.16         | 6.33      | 8.13           | 5.98      | 5.15      | 5.43      |
| <sup>⊢</sup> (100 SCM)<br>∣ GROSS GAMMA/ | 2820°        | 1190.     | 5410。          | 3080.     | 1820.     | 343.      |
| ∪ M/100 SCM<br>V COUNT DATE              | 12/02/69     | 11/15/69  | 11/13/69       | 11/13/69  | 11/13/69  | 11/13/69  |
|                                          | •            |           | PC/100 SCM     |           |           |           |
| ZR-95                                    | 991          | 472       | 1100           | 826       | 504       | 125       |
| A .COUNTING ER                           | 000 TC 20 E0 | DEDCENT   | *:NOT DETECTAB | 1 6       |           |           |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

\* NUL DELECT

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

. .

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>IIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2529<br>293<br>10/14/69<br>1705-1731<br>41N-39N<br>111W-109W<br>4.96 | 2481<br>293<br>10/16/69<br>1810-1843<br>39N-36N<br>108W-107W<br>6.90 | 2480<br>293<br>10/16/69<br>1702-1749<br>35N-33N<br>106W-102W<br>9.89 | 2486<br>292<br>10/15/69<br>1659-1742<br>35N-33N<br>106W-102W<br>9.39 | 2541<br>298<br>10/14/69<br>1635-1710<br>33N-31N<br>102W-98W<br>7.79 | 2542<br>298<br>10/14/69<br>1710-1740<br>31N-29N<br>98W- 94W<br>6.70 |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| GROSS GAMMA/                                                                          | 381.                                                                 | 306。                                                                 | 138.                                                                 | 301.                                                                 | 146.                                                                | 28.                                                                 |
| COUNT DATE                                                                            | 11/13/69                                                             | 11/10/69                                                             | 11/10/69                                                             | 11/12/69                                                             | 11/14/69                                                            | 11/14/69                                                            |
| ZR-95                                                                                 | 6.9                                                                  | 65                                                                   | PC/100 SCM<br>28                                                     | 64                                                                   | 20                                                                  | 5                                                                   |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

. . .

\*:NOT DETECTABLE

\$2

]

## ALTITUDE 15.2 KM

| SAMPLE NO.    | 2543      | 2544      | 2720       | 2719      | 2718      | 2717      |
|---------------|-----------|-----------|------------|-----------|-----------|-----------|
| FLIGHT NO.    | 298       | 298       | 291        | 291       | 291       | 291       |
| DATE          | 10/14/69  | 10/14/69  | 10/15/69   | 10/15/69  | 10/15/69  | 10/15/69  |
| TIME          | 1740-1818 | 1818-1841 | 1941-2012  | 1908-1941 | 1836-1908 | 1807-1836 |
| LAT.          | 29N-26N   | 26N-24N   | 24N-21N    | 21N-18N   | 18N15N    | 15N-12N   |
| LONG.         | 94W 91W   | 91W- 89W  | 89W- 86W   | 86W- 84W  | 84W- 82W  | 82W 81W   |
| H VOL. OF AIR | 8.46      | 5.18      | 6.77       | 7.20      | 7.10      | 6.44      |
| (100 SCM)     |           |           |            |           |           |           |
| GROSS GAMMA/  | 29。       | 48.       | 226。       | 34.       | 155。      | 22。       |
| ы м/100 SCM   |           |           |            |           |           |           |
| COUNT DATE    | 11/14/69  | 11/14/69  | 11/21/69   | 11/21/69  | 11/22/69  | 11/22/69  |
|               |           |           |            |           |           |           |
|               |           |           | PC/100 SCM |           |           |           |
| ZR-95         | 4         | 8         | 34         | 8         | 25        | 3         |
|               |           |           |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

77 میں ب

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | ΙN | OCTOBER | 1969 |

. .

....

7

ł

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT. | 2716<br>291<br>10/15/69<br>1750-1807<br>12N-10N | 2726<br>289<br>10/17/69<br>1440-1512<br>12N- 9N | 2727<br>289<br>10/17/69<br>15121548<br>9N- 5N | 2707<br>291<br>10/13/69<br>1350-1428<br>5N- 1N | 2708<br>291<br>10/13/69<br>1428-1503<br>1N- 3S | 2709<br>291<br>10/13/69<br>1503-1544<br>3S- 7S |
|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| LONG.<br>VOL. OF AIR<br>(100 SCM)                | 81W- 80W<br>3.77                                | 81W- 79W<br>6.90                                | 79W 79W<br>7.81                               | 80W- 80W<br>8.78                               | 81W- 80W<br>7.67                               | 33-75<br>81W-80W<br>9°39                       |
| H GROSS GAMMA/<br>M/100 SCM                      | 13.                                             | 30.                                             | 11.                                           | 10.                                            | 16.                                            | 12.                                            |
| COUNT DATE                                       | 11/22/69                                        | 12/05/69                                        | 11/23/69                                      | 11/26/69                                       | 11/26/69                                       | 11/26/69                                       |
| ZR-95                                            | 2                                               | 5                                               | PC/100 SCM<br>2                               | 2                                              | 2                                              | 2                                              |

A:COUNTING ERROR IS 20-50 PERCENT \*:NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT **?:DATA SUSPECT** 

. . .

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TOTAL | GAMMA | AND | ZR-95 | CUNCENTRATIONS | IN | OCTOBER | 1969 |

| SAMPLE NO.     | 2710      | 2581     | 2580       | 2579      | 2578      | 2561      |
|----------------|-----------|----------|------------|-----------|-----------|-----------|
| FLIGHT NO.     | 291       | 289      | 289        | 289       | 289       | 289       |
| DATE           | 10/13/69  | 10/13/69 | 10/13/69   | 10/13/69  | 10/13/69  | 10/15/69  |
| TIME           | 1544~1626 | 15401630 | 1512-1540  | 1445-1512 | 1414-1445 | 1412-1447 |
| LAT.           | 7S-11S    | 15S-20S  | 205-235    | 235-265   | 265-295   | 295-335   |
| LONG .         | 80W- 78W  | 76W- 73W | 73W- 72W   | 72W- 71W  | 71W- 70W  | 69W- 58W  |
| VOL. OF AIR    | 9.62      | 10.96    | 6.02       | 5.73      | 6.45      | 7.52      |
| (100 SCM)      |           |          |            |           |           |           |
| 🛏 GROSS GAMMA/ | 18.       | 18.      | 33 o       | 31.       | 42.       | 400.      |
| H M/100 SCM    |           |          |            |           |           |           |
| I COUNT DATE   | 11/26/69  | 11/15/69 | 11/15/69   | 11/15/69  | 11/15/69  | 11/14/69  |
| 0              |           |          |            |           |           |           |
| H              |           |          |            |           |           |           |
|                |           |          | PC/100 SCM |           |           |           |
| ZR-95          | 3         | 3        | 5          | 5         | 6         | 66        |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT \*:NOT DETECTABLE

|       |       |     |       | TABLE 3C       |            |      |
|-------|-------|-----|-------|----------------|------------|------|
| TOTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN DCTOBER | 1969 |

**1**-

| SAMPLE NO.             | 2630      | 2629      | 2628       | 2627      | 2626      | 2625      |
|------------------------|-----------|-----------|------------|-----------|-----------|-----------|
| FLIGHT NO.             | 286       | 286       | 286        | 286       | 286       | 286       |
| DATE                   | 10/14/69  | 10/14/69  | 10/14/69   | 10/14/69  | 10/14/69  | 10/14/69  |
| TIME                   | 1817-1852 | 1747-1816 | 1722-1746  | 1656-1721 | 1632-1655 | 1614-1631 |
| LAT.                   | 33S37S    | 375-405   | 40S-43S    | 43S-46S   | 46S-49S   | 49S51S    |
| LONG.                  | 69W 68W   | 69W- 68W  | 68W- 67W   | 67W- 67W  | 67W- 67W  | 67W- 67W  |
| VOL. OF AIR            | 6.75      | 5.59      | 4.43       | 4.49      | 4.13      | 3.05      |
| (100 SCM)              |           |           |            |           |           |           |
| H GROSS GAMMA/         | 344.      | 660.      | 770.       | 768.      | 683。      | 620。      |
| <sup>™</sup> M/100 SCM |           |           |            |           |           |           |
| I COUNT DATE           | 11/19/69  | 11/19/69  | 11/19/69   | 11/18/69  | 11/18/69  | 11/18/69  |
| 6<br>N                 |           |           |            |           |           |           |
|                        |           |           | PC/100 SCN | 4         |           |           |
| ZR-95                  | 63        | 115       | 133        | 128       | 121       | 118       |
|                        |           |           |            |           |           |           |
|                        |           |           |            |           |           |           |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

h

**\*:NOT DETECTABLE** 

.

THE REPORT OF A CASE OF A DESCRIPTION OF A CASE OF A CAS

## ALTITUDE 13.7 KM

|        | ZR-95                     | 224       | 292       | PC/100 SCM<br>660 | 422       | 279       | 249       |
|--------|---------------------------|-----------|-----------|-------------------|-----------|-----------|-----------|
| ω<br>0 | M/100 SCM<br>Count date   | 11/21/69  | 11/21/69  | 11/15/69          | 11/15/69  | 11/13/69  | 11/13/69  |
| 1      | (100 SCM)<br>GROSS GAMMA/ | 800.      | 722。      | 1660.             | 1530.     | 725。      | 645。      |
| ЧI     | VOL. OF AIR               | 6.25      | 8.41      | 4.79              | 11.23     | 7.45      | 7.19      |
|        | LONG.                     | 139W-136W | 136W132W  | 132W-129W         | 129W-125W | 125W-121W | 121W-117W |
|        | LAT.                      | 61N-59N   | 59N56N    | 56N-53N           | 53N-50N   | 50N-47N   | 47N-45N   |
|        | TIME                      | 2032-2058 | 2058-2133 | 2133-2209         | 2209-2255 | 1949-2020 | 2020-2052 |
|        | DATE                      | 10/14/69  | 10/14/69  | 10/14/69          | 10/14/69  | 10/14/69  | 10/14/69  |
|        | FLIGHT NO.                | 288       | 288       | 288               | 288       | 293       | 293       |
|        | SAMPLE NO.                | 2782      | 2783      | 2784              | 2785      | 2534      | 2535      |

A:COUNTING ERROR IS 20-50 PERCENT \*: NOT DETECTABLE B:COUNTING ERROR IS 51-100 PERCENT

**?:DATA SUSPECT** 

|       | <b>-</b> . |     |       | TABLE 3C       |            |      |
|-------|------------|-----|-------|----------------|------------|------|
| TOTAL | GAMMA      | AND | ZR-95 | CONCENTRATIONS | IN OCTOBER | 1969 |

## ALTITUDE 13.7 KM

22

٩,

3

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2536<br>293<br>10/14/69<br>2052-2119<br>45N-43N<br>117W-114W<br>6°26 | 293       293         10/14/69       10/14/69         2052-2119       2119-2148         45N-43N       43N-41N         117W-114W       114W-111W         6.26       6.89 | 2538<br>293<br>10/14/69<br>2148-2211<br>41N-39N<br>111W-109W<br>5.40 | 2620<br>286<br>10/14/69<br>1348-1421<br>37S-40S<br>69W- 68W<br>7.57 | 2621<br>286<br>10/14/69<br>1422-1451<br>40S-43S<br>68W 67W<br>6.51 | 2622<br>286<br>10/14/69<br>1452-1523<br>43S-46S<br>67W-67W<br>6.93 |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| H GROSS GAMMA/<br>H M/100 SCM                                                         | 677 <sub>°</sub>                                                     | 916。                                                                                                                                                                    | 741。                                                                 | 439。                                                                | 521。                                                               | 620.                                                               |
| າ COUNT DATE<br>ອາ<br>4                                                               | 11/13/69                                                             | 11/14/69                                                                                                                                                                | 11/14/69                                                             | 11/18/69                                                            | 11/18/69                                                           | 11/18/69                                                           |
| ZR-95                                                                                 | 271                                                                  | 225                                                                                                                                                                     | PC/100 SCM<br>294                                                    | 73                                                                  | 88                                                                 | 108                                                                |
| A:COUNTING ER                                                                         | ROR IS 20-50                                                         | PERCENT                                                                                                                                                                 | *:NOT DETECTABLE                                                     | E                                                                   |                                                                    |                                                                    |

B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

. . .

CLAREE

| TABLE 3C |       |     |       |                |    |         |      |
|----------|-------|-----|-------|----------------|----|---------|------|
| TOTAL    | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

## ALTITUDE 13.7 KM

| SAMPLE NO.   | 2623      | 2624      |
|--------------|-----------|-----------|
| FLIGHT NO.   | 286       | 286       |
| DATE         | 10/14/69  | 10/14/69  |
| TIME         | 1524-1551 | 1552-1610 |
| LAT.         | 465-495   | 495-515   |
| LONG.        | 67W- 67W  | 67W- 67W  |
| VOL. OF AIR  | 6.16      | 3.96      |
| (100 SCM)    |           |           |
| GROSS GAMMA/ | 515.      | 530.      |
| M/100 SCM    |           |           |
| COUNT DATE   | 11/18/69  | 11/18/69  |
|              |           |           |
|              |           |           |
|              |           |           |
| ZR-95        | 83        | 89        |

PC/100 SCM

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT **\*:NOT DETECTABLE** 

TI -

65

| SAMPLE NO.<br>FLIGHT NO.<br>DATE<br>TIME<br>LAT.<br>LONG.<br>VOL. OF AIR<br>(100 SCM) | 2771<br>296<br>10/13/69<br>2139-2218<br>75N-71N<br>143W-143W<br>10.72 | 2770<br>296<br>10/13/69<br>2111-2139<br>71N-68N<br>144W-143W<br>7.70 | 2769<br>296<br>10/13/69<br>2044-2111<br>68N-65N<br>146W-144W<br>7.79 |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| GRDSS GAMMA/<br>M/100 SCM                                                             | 534。                                                                  | 210.                                                                 | 263。                                                                 |
| COUNT DATE                                                                            | 11/15/69                                                              | 11/22/69                                                             | 11/22/69                                                             |

|       |       |     |       | TABLE 3C       |    |         |      |
|-------|-------|-----|-------|----------------|----|---------|------|
| TUTAL | GAMMA | AND | ZR-95 | CONCENTRATIONS | IN | OCTOBER | 1969 |

**.** .

| ZR-95 | 100 |    | PC/100 SCM |
|-------|-----|----|------------|
| 21 33 | 108 | 44 | 51         |
|       |     |    |            |

A:COUNTING ERROR IS 20-50 PERCENT B:COUNTING ERROR IS 51-100 PERCENT ?:DATA SUSPECT

.

\*:NOT DETECTABLE

II - 66

#### Table 3d

#### QUALITY CONTROL RESULTS

| Report<br>Date | Sample No. | Reference<br>Date                     | _Sr-90_                                                 | <u>Zr-95</u>         | <u>Ce-144</u>        | Pb-210                           | <u>Po-210</u>          | Pu-238                 | Pu-239                                        |
|----------------|------------|---------------------------------------|---------------------------------------------------------|----------------------|----------------------|----------------------------------|------------------------|------------------------|-----------------------------------------------|
| Standards      | •          |                                       |                                                         |                      | dpm                  | ± % Standard                     | Deviation              |                        |                                               |
| 3/70           | 2477       | 7/25/69 added<br>found<br>% deviation | 3.26x10 <sup>3</sup><br>3.36x10 <sup>3</sup> ±1<br>+3.1 | 1020<br>891±4<br>-13 | 661<br>701±3<br>+6.0 | 6.78<br>7.77±31<br>+15           | 6.78<br>7.07±4<br>+4.3 | 2.96<br>2.96±3<br>0    | 4.10<br>4.4 <del>6±</del> 2<br>+8.8           |
| 44             | 2478       | 7/27/69 added<br>found<br>% deviation | 3.91x10 <sup>3</sup><br>3.42x10 <sup>3</sup> ±1<br>+12  | 891<br>835±4<br>~6.3 | 560<br>607±2<br>+8.4 | 9.76<br>10. <u>4+</u> 19<br>+6.6 | 9.76<br>11.1±5<br>+14  | 2.96<br>2.56±5<br>-4.8 | 3.49<br><b>3.63<u>+</u>4</b><br>+ <b>4.</b> 0 |
|                |            | Avarage % deviation                   | +7.5                                                    | -9.6                 | +7.2                 | +11                              | +9.2                   | -2.4                   | +6.4                                          |

|            | $dpm \pm \%$ Standard Deviation |                               |                 |              |                      |                   |          |          |          |  |
|------------|---------------------------------|-------------------------------|-----------------|--------------|----------------------|-------------------|----------|----------|----------|--|
| Blanks     |                                 |                               |                 |              |                      |                   |          |          |          |  |
| 2/70       | 2250A                           | 7/27/69                       | *               | *            | 2.99±69              |                   |          | *        | *        |  |
| R          | 2301A                           | 7/23/69                       | *               | 2.74±60      | 3.0 <del>81</del> 19 |                   |          | *        | *        |  |
|            |                                 |                               |                 |              |                      | pCi/100 SCM       |          |          |          |  |
| Duplicates | 2446                            |                               | 97.7±1          | 1390±1       | 1790±1               | 0.569±25          | 0.295±49 | 0.452±5  | 1.73±3   |  |
|            | 2475                            |                               | 103±3           | 1470±1       | 2000±1               | 0.55 <b>1±</b> 36 | 0.388±52 | 0.525±7  | 1.86±4   |  |
|            | % deviat                        | cion about the average        | ±5 <b>.3</b>    | <b>±5</b> ,6 | +11                  | ±3.2              | ±27      | ±15      | ±7.2     |  |
|            | 2458                            |                               | 82 <i>.</i> 8±1 | 1480±2       | 1700±1               | 0.920±18          | 0.333±51 | 0.223±8  | 1.48±4   |  |
|            | 2476                            |                               | 80.6 <b>±2</b>  | 1350±1       | 1650±1               | 0.813±22          | 0.380±48 | 0.692±4? | 0,718±4? |  |
|            | % devia:                        | <b>tion</b> about the average | ±2.7            | ±9.2         | ±3.0                 | ±12               | ±13      |          |          |  |
|            | i                               | Average % deviation           | ±4.0            | ±7.4         | ±7.0                 | ±7.6              | ±20      |          |          |  |

? Data suspect

II - 67

## High Altitude Balloon Sampling Program

by P. W. Krey (HASL)

In HASL-217, the analyses of all high altitude balloon samples collected during 1968 were summarized. Unfortunately three samples collected in October 1968 at San Angelo, Texas were reported as having been flown in September. This error has been corrected in the accompanying tables which cover both the September and October flights made at San Angelo. None of the radiochemical data has been changed - only the collection dates.

#### Table 4

#### STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

## BALLOON SAMPLES COLLECTED DURING SEPTEMBER 1968 LATITUDE, 31N SAN ANGELO, TEXAS

|   | ALTITUDE (KM)          | 21      | 24      | 27    |
|---|------------------------|---------|---------|-------|
|   | FLIGHT DAY             | 16      | 01      | 08    |
|   | HASL NUMBER            | 3011    | 2999    | 3001  |
|   | COLLECTION UNIT        | D7-1    | D7-1    | D7-1  |
|   | ANALYTICAL LABORATORY  | TLW     | TLW     | TLW   |
|   | GROSS GAMMA (CPM/KSCM) | 1298.0# | 1756.7# | 608.2 |
|   | IRON-55                | 4200    |         |       |
|   | STRONTIUM-89           | 285A    | *       | *     |
|   | STRONTIUM-90           | 543     | 282     | 97.2  |
|   | ZIRCONIUM-95           | 635     | 109A    | *     |
| - | CERIUM-144             | 4720    | 943     | 118   |
|   | POLONIUM-210           | 1.94A   | 1.76B   | 1.04B |
|   | PLUTONIUM-238          | 8.37    | 7.03    | 6.82  |
|   | PLUTONIUM-239          | 13.0    | 5.80    | 2.37  |
|   |                        |         |         |       |

A: One Standard Deviation of Counting Error is >20% to 50% of count.

B: One Standard Deviation of Counting Error is >50% to 100% of Count.

\*: Standard Deviation Greater than Data Value.

4: Gross Gamma Count More than Two Weeks After Collection.

Ō

## Table 4

#### STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

BALLOON SAMPLES COLLECTED DURING SEPTEMBER 1968 LATITUDE, 31N SAN ANGELO, TEXAS

| 32    | 36                                                                          | 41                                                                                                                                |
|-------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 09    | 07                                                                          | 12                                                                                                                                |
| 3002  | 3000                                                                        | 3009                                                                                                                              |
| AE-1  | AE-1                                                                        | HV3 K                                                                                                                             |
| TLW   | TLW                                                                         | WLT                                                                                                                               |
| 706.2 | 776.0#                                                                      | 714.1                                                                                                                             |
|       | PC/KSCM                                                                     |                                                                                                                                   |
| *     | *                                                                           |                                                                                                                                   |
| 32.7B | 24.0B                                                                       | 61.1A                                                                                                                             |
| *     | *                                                                           |                                                                                                                                   |
| 65.0A | *                                                                           | *                                                                                                                                 |
| *     | *                                                                           | 11.5A                                                                                                                             |
| 3.88  | 2.33B                                                                       | 24.6                                                                                                                              |
| 1.06A | *                                                                           | .792B                                                                                                                             |
|       | 09<br>3002<br>AE-1<br>TLW<br>706.2<br>*<br>32.7B<br>*<br>65.0A<br>*<br>3.88 | 09 07<br>3002 3000<br>AE-1 AE-1<br>TLW TLW<br>706.2 776.0 ∰<br>PC/KSCM<br>* *<br>32.7B 24.0B<br>* *<br>65.0A *<br>*<br>3.88 2.33B |

A: One Standard Deviation of Counting Error is 20% to 50% of Count.

B: One Standard Deviation of Counting Error is 50% to 100% of Count.

\*: Standard Deviation Greater than Data Value.

#: Gross Gamma Count more than Two Weeks After Collection.

II - 70

Table 4

V-260

#### STRATOSPHERIC RADIONUCLIDE CONCENTRATIONS

# BALLOON SAMPLES COLLECTED DURING OCTOBER 1968 LATITUDE, 31N SAN ANGELO, TEXAS

| ALTITUDE (KM)<br>FLIGHT DAY<br>HASL NUMBER<br>COLLECTION UNIT<br>ANALYTICAL LABORATORY<br>GROSS GAMMA (CPM/KSCM) | 24<br>30<br>3045<br>D7-1<br>TLW<br>1187.1 拼 | 27<br>28<br>3035<br>D7-1<br>TLW<br>296.9# | 30<br>29<br>3036<br>D7-1<br>TLW<br>198.5# |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                                                                                                  |                                             | 0644664                                   |                                           |
|                                                                                                                  |                                             | PC/KSCM                                   |                                           |
| IRON-55                                                                                                          | 6460                                        |                                           |                                           |
| STRONTIUM-89                                                                                                     | 206A                                        | *                                         |                                           |
| STRONTIUM-90                                                                                                     | 426                                         | 104                                       | 28.5                                      |
| ZIRCONIUM-95                                                                                                     | 275A                                        | *                                         |                                           |
| CERIUM-144                                                                                                       | 2560                                        | 165                                       | *                                         |
| POLONIUM-210                                                                                                     | 1.22B                                       | 2.48A                                     | *                                         |
| PLUTONIUM-238                                                                                                    | 7.61                                        | 6.77                                      | 3.09                                      |
| PLUTONIUM-239                                                                                                    | 10.0                                        | 1.98                                      | •883A                                     |

A: ONE STANDARD DEVIATION OF COUNTING ERROR IS >20% TO 50% OF COUNT. B: ONE STANDARD DEVIATION OF COUNTING ERROR IS >50% TO 100% OF COUNT. \*: STANDARD DEVIATION GREATER THAN DATA VALUE #: GROSS GAMMA COUNT MORE THAN TWO WEEKS AFTER COLLECTION

н Ĥ 1 71

#### Part III

# DATA FROM SOURCES OTHER THAN HASL

Numerous Fallout studies are conducted by other organizations in the United States and abroad. Some of these are sent to the editors for dissemination in these HASL Quarterly reports. Submitted data are reproduced essentially as received and no interpretation by HASL is attempted.

|    |                                                                                                                                                                     | _Page_ |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. | National Radiation Laboratory, Department of Health<br>Christchurch, New Zealand<br>Environmental Radioactivity in New Zealand                                      |        |
|    | Quarterly Report for April-June 1969: NRL-F35                                                                                                                       | III-2  |
|    | Quarterly Report for July-September 1969:<br>NRL-F36                                                                                                                | III-14 |
| 2. | Department of Scientific and Industrial Research<br>The Institute of Nuclear Sciences<br>Lower Hutt, New Zealand                                                    | III-24 |
|    | Radioisotopes in Rainwater:<br>January - April 1968<br>May - August 1968<br>September - December 1968                                                               |        |
| 3. | Radiological Physics Division<br>Argonne National Laboratory<br>Cesium-137 in Various Chicago Foods (Coll. Month<br>January 1970)<br>by S. S. Brar and D. M. Nelson | III-28 |
| 4. | EURATOM Joint Nuclear Research Centre<br>Ispra Establishment, Protection Service<br>Site Survey and Meteorology Section, Quarterly                                  | 00     |

III - 1

Report

III-32

REPORT No. NRL-F 35

## DEPARTMENT OF HEALTH



QUARTERLY REPORT APRIL - JUNE 1969

# ENVIRONMENTAL RADIOACTIVITY IN NEW ZEALAND

AND

MEASUREMENTS ON SAMPLES FROM FIJI AND RAROTONGA

# NATIONAL RADIATION LABORATORY P.O. BOX 1456, CHRISTCHURCH, NEW ZEALAND

#### SYMBOLS UNITS AND EQUIVALENTS

#### UNITS OF RADIOACTIVITY

Ci ... Curie ...  $3.7 \times 10^{10}$  disintegrations per second mCi ... millicurie ...  $10^{-3}$  Curies pci ... picocurie ...  $10^{-12}$  Curies ... 2.22 disintegrations per minute

#### UNITS OF LENGTH, AREA, VOLUME AND MASS AND THEIR EQUIVALENTS IN THE IMPERIAL SYSTEM

| cm <sub>2</sub> | centimetre 0.394 inches                                             |
|-----------------|---------------------------------------------------------------------|
| km <sup>2</sup> | square kilometre 0.386 square miles<br>cubic metre 35.31 cubic feet |
|                 |                                                                     |
|                 | litre 0.880 quart                                                   |
| g               | gram 0.0353 ounce                                                   |

#### NOTES

- 1. Unless otherwise noted, all times given in this report are New Zealand Standard time i.e. G.M.T. + 12 hours.
- 2. Radioactive fallout in rain is expressed as:
  - (a) Deposition millicuries per square kilometre (mCi/km<sup>2</sup>)
  - (b) Concentration picocuries per litre

(pCi/litre)

Concentration (pCi/litre) =  $\frac{\text{deposition (mCi/km}^2)}{\text{rainfall (cm)}} \times 100$ 

Multiply mCi/km<sup>2</sup> by 2.59 to obtain mCi/sq. mile.

3. The levels of strontium-90 contamination in food and bone are given in "Strontium Units" i.e. picocuries strontium-90 per gram of calcium .....pCi Sr<sup>90</sup>/g Ca.

Similarly caesium-137 results are given as picocuries of caesium-137 per gram of potassium.....pCi  $Cs^{137}/g$  K.

One litre of whole milk contains approximately:

1.2 g of calcium

1.4 g of potassium.

TI! - 3

# CONTENTS

PAGE

| SYMBOLS UN | NITS A | ND EQU | IVALEN | ITS     | • •   | ••   | •• •  | •    | • •   | ••   | ••  | 1 |
|------------|--------|--------|--------|---------|-------|------|-------|------|-------|------|-----|---|
| CONTENTS   | •• •   | • ••   | •• •   | • ••    | ••    | ••   | ••••• |      | •     | ••   | ••  | 2 |
| POTENTIAL  | HEALT  | H HAZA | RD - H | PERMISS | IBLE  | LEVE | LS OF | RAI  | AOICA | CTIV | ITY | 3 |
| LOCATION ( | F COL  | LECTIN | G STAI | IONS I  | N NEW | ZEA  | LAND. | FIG. | , 1   | ••   | ••  | 4 |
| GRAPHICAL  | SUMMA  | RY OF  | ROUTIN | IE MEAS | UREME | INTS | FIG.  | 2.   | •     | ••   | ••  | 5 |
| SUMMARY    | ••••   | • ••   | •• •   | • ••    | ••    | •• • | •• •  |      | • •   | ••   | ••  | 6 |

# RESULTS OF ROUTINE MONITORING OF FALLOUT DURING FIRST QUARTER 1968

| Total Beta Activity of Air Samples, Table 1         | •• •• •• 7    |
|-----------------------------------------------------|---------------|
| Total Beta Activity of Weekly Rainwater Collections | s, Table 2. 8 |
| Strontium-90 in Rain, Table 3a                      | •••••9        |
| Strontium-89 in Rain, Table 3b                      | • • • • 10    |
| Strontium-90 and Caesium-137 in Milk, Table 4.      | •••••         |

# POTENTIAL HEALTH HAZARD

The significance of the levels of radioactivity in environmental samples published in this Report may be understood more readily by comparing these levels with the following "permissible levels for the general population" which have been adopted for use in New Zealand.

These levels have been set as a guide to limit the controlled release of radioactive substances into the environment by licensed users in New Zealand.

They are levels which individually would not require remedial or preventive action and have been chosen to protect the most sensitive age group in the population. It is considered that any risk associated with these levels is exceedingly small and that levels many times as great would involve a hazard which is small compared to commonly accepted risks of life.

#### "Permissible levels" of Radioactivity

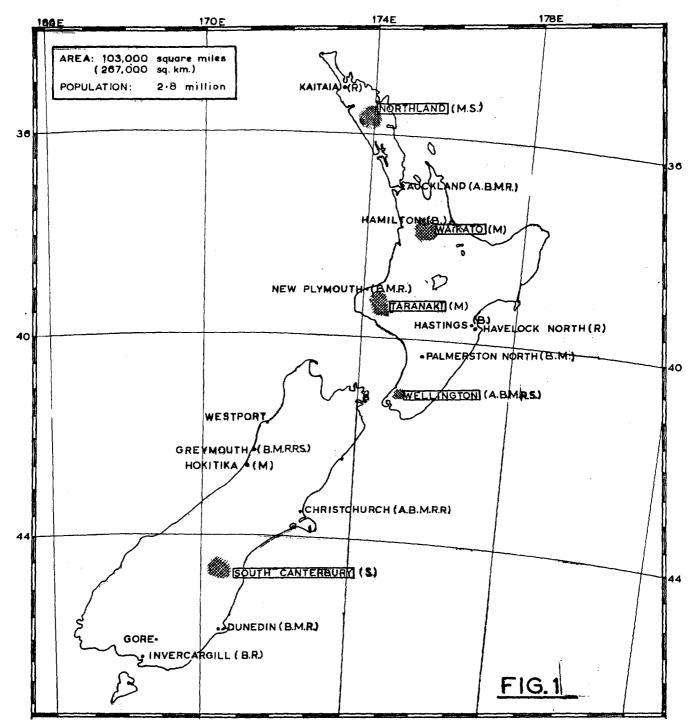
These levels were derived so as to ensure that the dose to any member of the public arising from the controlled use of radioactive materials does not exceed the Dose Limit recommended by the International Commission on Radiological Protection.

#### Strontium-90

In Milk: 270 Strontium Units - maintained indefinitely in the milk. In Bone: 67 Strontium Units.

Caesium-137

In Milk: 7,000 pCi/g K - maintained indefinitely in the milk.


Iodine-131

In Milk: 200 pCi/litre - as an average intake over one year.

Total Beta Activity of Mixed Fission Products Between 10 and 80 Days Old

In Air: 300 pCi/m<sup>3</sup> - for continuous breathing.

In Rainwater: 6,000 pCi/litre - for continuous consumption.



LOCATION OF COLLECTING STATIONS ESTABLISHED BY THE NATIONAL RADIATION LABORATORY FOR AIR(A), BONE(B), MILK(M), RAINWATER(R), AND SOIL (S) SAMPLES IN NEW ZEALAND one type of collection is performed (e.g. weekly and monthly rainwater collection) the appropriate symbol is shown twice. Collection areas not confined to a single location but extending over part of a province or district are shown thus WINAME

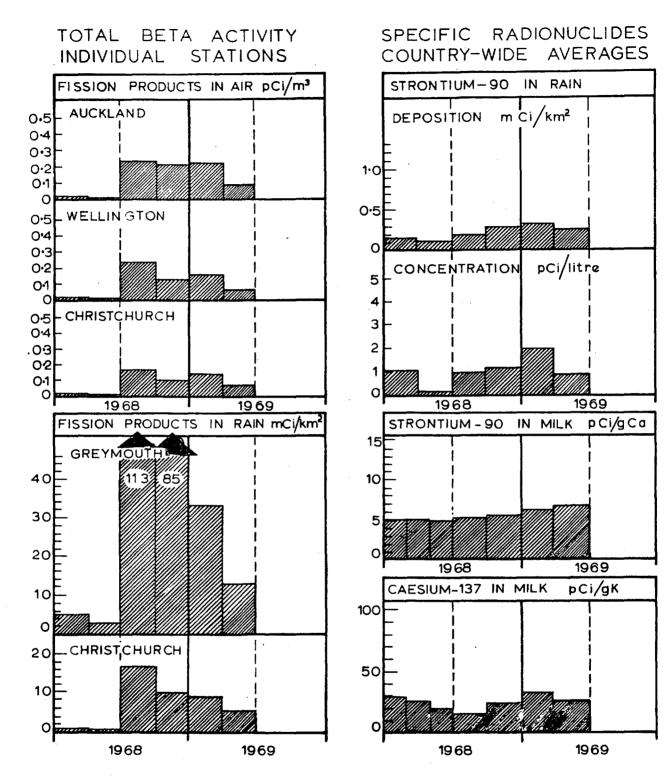



FIG. 2 SUMMARY OF ROUTINE MEASUREMENTS

- -

•••••

#### SUMMARY

#### GENERAL

Results of routine monitoring of fallout in air, rain and milk samples during the aecond quarter 1969 are tabulated in this Report. These results are summarized on a quarterly basis and are presented graphically in Fig. 2, together with results from previous Quarterly Reports during 1968 and 1969.

Additional information on sample collection and evaluation, comparison of levels of environmental radioactivity and health hazard assessment is given in the Annual Summary Report for 1968 "ENVIRONMENTAL RADIOACTIVITY IN NEW ZEALAND, Report No. NRL-F33" which also includes the results of extended monitoring of fallout from the French nuclear tests in the Pacific.

#### TOTAL BETA ACTIVITY - INDIVIDUAL STATIONS

During the first quarter 1969, and also during the two previous quarters, levels of fission products in air and rainwater increased. These higher levels resulted from the 1968 series of nuclear tests conducted by France in the Pacific area between 8 July and 9 September. This series included for the first time the detonation of two hydrogen bombs.

The expected decrease in levels, which had been evident during the months following the previous test series of 1966 and 1967 occurred more slowly following the 1968 nuclear tests. The total beta activity of air samples during the first quarter 1969 had not decreased significantly from the levels of the previous two quarterly periods. There has been, however, a significant decrease during the second quarter 1969. The total beta activity of rain samples has steadily decreased since the third quarter 1968. The greater delay in the reduction of fission product levels following the 1968 nuclear tests undoubtedly results from the injection of fission debris into higher altitudes when hydrogen bombs are detonated. The subsequent deposition of the debris is thus extended over a longer period.

The average levels in air during the second quarter 1969 were 0.09  $pCi/m^3$  at Auckland and 0.06  $pCi/m^3$  at Wellington and Christchurch. During the corresponding periods in 1967 and 1968 the highest levels were 0.03  $pCi/m^3$  (at Auckland and Christchurch) and 0.01  $pC1/m^3$  (at Auckland) respectively.

The total deposition in rain during the second quarter 1969 was 12.3 mCi/km<sup>2</sup> at Greymouth, and 5.4 mCi/km at Christchurch. The levels have steadily decreased since the third quarter 1968. During the second quarters of 1967 and 1968 the highest deposition was also at Greymouth: 4.7 and 2.3 mCi/km<sup>2</sup> respectively.

#### SPECIFIC RADIONUCLIDES - COUNTRY-WIDE AVERAGES

1. <u>STRONTIUM-90 IN RAIN.</u> The average deposition in rain decreased slightly from 0.34 mCi/km<sup>2</sup> during the first quarter 1969 to 0.27 mCi/km<sup>2</sup> during the second quarter 1969. This level is about one fifth of the highest level previously recorded i.e. during the first quarter 1965.

2. STRONTIUM-89 IN RAIN. The average deposition reached a maximum of 5.1 mCi/km<sup>2</sup> during October 1968, about one month after the conclusion of the 1968 nuclear tests. During<sub>2</sub>the second quarter 1969 levels have been steadily falling: 0.5, 0.4 and 0.2 mCi/km<sup>2</sup> during April, May and June respectively. The previous highest level was 3.5 mCi/km<sup>2</sup> during November 1966.

<u>3.</u> STRONTIUM-90 IN MILK. The average level has increased slightly from 6.3 Strontium Units during the first quarter 1969 to 6.8 Strontium Units during the second quarter 1969. The highest level previously recorded was 15.9 Strontium Units during July-August 1964. The average level for the twelve months ending June 1969 (6.0 Strontium Units) is about 2% of the "permissible level" for the whole population<sup>(1)</sup>.

4. CAESIUM-137 IN MILK. The average level has decreased slightly from 33 pCi/g K during the first quarter 1969 to 27 pCi/g K during the second quarter 1969. The highest level previously recorded was 81 pCi/g K during March-April 1965. The average level for the twelve months ending June 1969 (25 pCi/g K) is less than 0.4% of the "permissible level" for the whole population (1).

(1) SEE POTENTIAL HEALTH HAZARD - PAGE 3.

RESULTS OF ROUTINE MONITORING OF FALLOUT DURING SECOND QUARTER 1909

TABLE 1

#### TOTAL BETA ACTIVITY OF AIR SAMPLES

In Picocuries per Cubic Metre Four Days after Collection. Filters changed 3 times each week.

|                    | Filters changed 3 times each week. |           |                     |                    |                     |  |  |  |  |
|--------------------|------------------------------------|-----------|---------------------|--------------------|---------------------|--|--|--|--|
| AUC                | KLAND                              | WELL      | INGTON              | CHRISTCHURCH       |                     |  |  |  |  |
| Date               | Total Beta                         | Date      | Total Beta          | Date               | Total Beta          |  |  |  |  |
| Filter             | Activity                           | Filter    | Activity            | Filter             | Activity            |  |  |  |  |
| Removed            | pCi/m <sup>3°</sup>                | Removed   | pCi/m <sup>3*</sup> | Removed            | pCi/m <sup>3°</sup> |  |  |  |  |
| 2.4.69             | 0.11                               | 4.4.69    | 0.07                | 2.4.69             | 0.08                |  |  |  |  |
| 4.4.69             | 0.16                               | 7.4.69    | 0.10                | 8.4.69             | 0.09                |  |  |  |  |
| 7.4.69             | 0.12                               | 9.4.69    | N.S.                | 14.4.69            | 0.07                |  |  |  |  |
| 9.4.69             | 0.12                               |           | 0.06                |                    |                     |  |  |  |  |
| 11.4.69            |                                    | 11.4.69   | 0.15                | 16.4.69<br>21.4.69 | 0.09                |  |  |  |  |
| 14.4.69            | 0.13                               | 14.4.69   |                     |                    | 0.05                |  |  |  |  |
| 16.4.69            | 0.25                               | 16.4.69   | 0.07                | 23.4.69            | 0.03                |  |  |  |  |
| 18.4.69            | 0.15                               | 18.4.69   | 0.12                | 24.4.69            | 0.05                |  |  |  |  |
| 21.4.69            | 0.16                               | 21.4.69   | 0.02                | 28.4.69            | 0.04                |  |  |  |  |
|                    | 0.08                               | 23.4.69   | 0.08                | 30.4.69            | 0.08                |  |  |  |  |
| 23.4.69            | 0.07                               | 25.4.69   | 0.06                |                    |                     |  |  |  |  |
| 25.4.69            | 0.10                               | 28.4.69   | 0.05                |                    |                     |  |  |  |  |
| 28.4.69<br>30.4.69 | 0.08<br>0.14                       | 30.4.69   | 0.11                |                    |                     |  |  |  |  |
| Average            | 0.14                               | Average   | 0.08                | Average            | 0.06                |  |  |  |  |
| 2.5.69             | 0.07                               | 2.5.69    | 0.09                | 2.5.69             | 0.05                |  |  |  |  |
| 5.5.69             | 0.07                               | 5.5.69    | N.S.                | 5.5.69             | 0.05                |  |  |  |  |
| 7.5.69             | 0.03                               | 7.5.69    | 0.07                | 7.5.69             | 0.07                |  |  |  |  |
| 9.5.69             | 0.11                               | 9.5.69    | 0.04                | 9.5.69             | 0.05                |  |  |  |  |
| 12.5.69            | 0.08                               | 12.5.69   | 0.06                | 12.5.69            | 0.03                |  |  |  |  |
| 14.5.69            | 0.13                               | 14.5.69   | 0.11                | 14.5.69            | 0.07                |  |  |  |  |
| 16.5.69            | 0.09                               | 16.5.69   | 0.13                | 16.5.69            | 0.06                |  |  |  |  |
| 19.5.69            | 0.09                               | 19.5.69   | 0.06                | 19.5.69            | 0.05                |  |  |  |  |
| 21.5.69            | 0.05                               | 21.5.69   | 0.10                | 21.5.69            | 0.10                |  |  |  |  |
| 23.5.69            | <0.01                              | 23.5.69   | 0.08                | 23.5.69            | 0.04                |  |  |  |  |
| 26.5.69            | 0.08                               | 26.5.69   | 0.03                | 26.5.69            | <0.01               |  |  |  |  |
| 28.5.69            | 0.09                               | 28.5.69   | 0.04                | 28.5.69            | 0.02                |  |  |  |  |
| 30.5.69            | 0.04                               | 30.5.69   | 0.05                | 30.5.69            | 0.03                |  |  |  |  |
| Average            | 0.07                               | Average   | 0.07                | Average            | 0.05                |  |  |  |  |
| 2.6.69             | 0.04                               | 2.6.69    | 0.02                | 3.6.69             | 0.04                |  |  |  |  |
| 4.6.69             | 0.02                               | 4.6.69    | 0.04                | 6.6.69             | 0.06                |  |  |  |  |
| 6.6.69             | 0.09                               | 6.6.69    | 0.06                | 9.6.69             | 0.04                |  |  |  |  |
| 9.6.69             | 0.10                               | 9.6.69    | 0.04                | 11.6.69            | 0.03                |  |  |  |  |
| 11.6.69            | 0.03                               | 11.6.69   | 0.03                | 13.6.69            | 0.05                |  |  |  |  |
| 12.6.69            | 0.18                               | 13.6.69   | 0.04                | 16.6.69            | 0.02                |  |  |  |  |
| 16.6.69            | 0.05                               | 16.6.69   | 0.05                | 18.6.69            | 0.04                |  |  |  |  |
| 18.6.69            | 0.07                               | 18.6.69   | 0.06                | 20.6.69            | 0.03                |  |  |  |  |
| 20.6.69            | 0.06                               | 20.6.69   | 0.03                | 23.6.69            | 0.02                |  |  |  |  |
| 23.6.69            | 0.04                               | 23.6.69   | 0.02                | 25.6.69            | 0.05                |  |  |  |  |
| 25.6.69            | 0.05                               | 25.6.69   | 0.03                | 27.6.69            | 0.03                |  |  |  |  |
| 27.6.69            | 0.08                               | 27.6.69   | 0.05                | 30.6.69            | 0.03                |  |  |  |  |
| 30.6.69            | 0.08                               | 30.6.69   | 0.04                |                    | _                   |  |  |  |  |
| Average            | 0.07                               | Average   | 0.04                | Average            | 0.04                |  |  |  |  |
| Quarterly          | 0.09                               | Quarterly | 0.06                | Quarterly          | 0.06                |  |  |  |  |
| Average            |                                    | Average   |                     | Average            |                     |  |  |  |  |
|                    |                                    | l         |                     | U                  |                     |  |  |  |  |

• • • • • • • • • • •

a di Alamatika Alamatika

| TABLE 2       TOTAL BETA ACTIVITY OF WEEKLY RAINWATER COLLECTIONS         FOUR DAYS AFTER COLLECTION |                                                    |                                                    |                                   |                                  |                            |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------|----------------------------------|----------------------------|--|--|
| АТ                                                                                                   | DATE OF C<br>FROM                                  | OLLECTION<br>TO                                    | DEPOSITION<br>mCi/km <sup>2</sup> | RAINFALL<br>cm                   | CONCENTRATION<br>pCi/litre |  |  |
|                                                                                                      | 29.3.69<br>5.4.69<br>12.4.69<br>19.4.69            | 5.4.69<br>12.4.69<br>19.4.69<br>26.4.69            | 1.5<br>2.2<br>1.4<br>2.0          | 6.2<br>5.5<br>7.8<br>7.8         |                            |  |  |
| ĺ                                                                                                    | 29.3.69                                            | 26.4.69                                            | 7.1                               | 27.3                             | . 26                       |  |  |
| GREYMOUTH                                                                                            | 26.4.69<br>3.5.69<br>10.5.69<br>17.5.69<br>24.5.69 | 3.5.69<br>10.5.69<br>17.5.69<br>24.5.69<br>31.5.69 | 0.2<br>1.3<br>0.4<br>1.6<br>0.2   | 1.0<br>2.8<br>1.0<br>8.9<br>0.9  |                            |  |  |
| GR                                                                                                   | 26.4.59                                            | 31.5.69                                            | . 3.7 .                           | 14.6                             | 25                         |  |  |
|                                                                                                      | 31.5.69<br>7.6.69<br>14.6.69<br>21.6.69            | 7.6.69<br>14.6.69<br>21.6.69<br>28.6.69            | 0.2<br><0.1<br>0.9<br>0.3         | 0.7<br>0.3<br>7.0<br>1.5         | :                          |  |  |
|                                                                                                      | 31.5.69                                            | 28.6.69                                            | 1.5                               | 9.5                              | 16                         |  |  |
|                                                                                                      | 2nd QUART                                          | ER 1969                                            | 12.3                              | 51.4                             | 24                         |  |  |
|                                                                                                      | 28.3.69<br>3.4.69<br>11.4.69<br>18.4.69<br>24.4.69 | 3.4.69<br>11.4.69<br>18.4.69<br>24.4.69<br>2.5.69  | 0.2<br>1.5<br>0.3<br>1.2<br>0.3   | 0.2<br>0.8<br><0.1<br>3.6<br>1.2 |                            |  |  |
|                                                                                                      | 28.3.69                                            | 2.5.69                                             | 3.5                               | 5.9                              | 59                         |  |  |
| CHRISTCHURCH                                                                                         | 2.5.69<br>9.5.69<br>16.5.69<br>23.5.69             | 9.5.69<br>16.5.69<br>23.5.69<br>30.5.69            | 0.5<br><0.1<br>0.1<br>0.3         | 1.7<br><0.1<br>0.7<br>2.6        |                            |  |  |
| RIS                                                                                                  | 2.5.69                                             | 30.5.69                                            | 1.0                               | 5.1                              | 20                         |  |  |
| CH                                                                                                   | 30.5.69<br>6.6.69<br>13.6.69<br>20.6.69            | 6.6.69<br>13.6.69<br>20.6.69<br>27.6.69            | 0.1<br><0.1<br>0.5<br>0.2         | 1.0<br>TRACE<br>0.8<br>1.5       |                            |  |  |
|                                                                                                      | 30.5.69                                            | 27.6.69                                            | 0.9                               | 3.3                              | 27                         |  |  |
|                                                                                                      | 2nd QUARTH                                         | ER 1969                                            | 5.4                               | 14.3                             | 38                         |  |  |

. . -

| TABLE 3a     STRONTIUM-90 IN RAIN SECOND QUARTER 1969                                                                       |                                                                      |                                                                      |                                                                      |                                                                  |                                                                  |                                                                 |                                                             |                                                      |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| COLLECT ING<br>STATIONS                                                                                                     | ]                                                                    | DEPOSITIO<br>mCi/km <sup>2</sup>                                     | N                                                                    |                                                                  | RAINFALL<br>cm                                                   |                                                                 | CONCENTRATION pCi/litre                                     |                                                      |                                                             |
| New Zealand                                                                                                                 | Apr.                                                                 | May                                                                  | Jun.                                                                 | Apr.                                                             | May                                                              | Jun.                                                            | Apr.                                                        | May                                                  | Jun.                                                        |
| Kaitaia<br>Auckland<br>New Plymouth<br>Havelock North<br>Wellington<br>Greymouth<br>Christchurch<br>Dunedin<br>Invercargill | 0.09<br>0.12<br>0.09<br>0.06<br>0.12<br>0.23<br>0.08<br>0.07<br>0.10 | 0.14<br>0.07<br>0.05<br>0.03<br>0.12<br>0.16<br>0.06<br>0.06<br>0.07 | 0.18<br>0.12<br>0.08<br>0.03<br>0.05<br>0.13<br>0.02<br>0.02<br>0.02 | 12.1<br>12.3<br>11.1<br>7.0<br>7.2<br>24.3<br>5.8<br>5.3<br>11.2 | 22.0<br>11.7<br>13.4<br>5.1<br>10.9<br>13.6<br>5.1<br>7.5<br>7.9 | 25.2<br>8.7<br>14.6<br>5.2<br>7.5<br>14.1<br>2.5<br>2.9<br>11.6 | 0.8<br>1.0<br>0.8<br>0.8<br>1.7<br>0.9<br>1.3<br>1.2<br>0.9 | 0.5<br>0.6<br>0.6<br>0.7<br>1.2<br>1.2<br>0.9<br>0.9 | 0.7<br>1.4<br>0.5<br>0.6<br>0.7<br>0.9<br>1.0<br>0.8<br>0.7 |
| Country-Wide Averages<br>Monthly<br>Quarterly                                                                               | 0.11                                                                 | 0.08<br>0.27*                                                        | 0.08                                                                 | 10.7                                                             | 11.5                                                             | 10.3                                                            | 1.0                                                         | 0.8                                                  | 0.8                                                         |
| Pacific Islands                                                                                                             |                                                                      |                                                                      |                                                                      |                                                                  | · · · · · · · · · · · · ·                                        | <u></u>                                                         |                                                             |                                                      |                                                             |
| Suva, Fiji<br>Rarotonga                                                                                                     | 0.10<br>0.07                                                         | N.S.<br>0.04                                                         | 0.04<br>0.03                                                         | 25.0<br>35.8                                                     | 7.3<br>9.1                                                       | 2.4<br>7.3                                                      | 0.4<br>0.2                                                  | N.S.<br>0.5                                          | 1.7<br>0.4                                                  |

\* This value is the sum of the monthly depositions during the quarter.

N.S. No Sample.

III - 11

ر میں ماریح

| TABLE 3b                                                                                                                    | STRONTIUM-89 IN RAIN SECOND QUARTER 1969                    |                                                                               |                   |                            |                                                |                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|----------------------------|------------------------------------------------|--------------------------------------|--|--|
| COLLECTING<br>STATIONS                                                                                                      |                                                             | DEPOSITION RATIO<br>mCi/km <sup>2</sup> (at mid-month) Strontium-89/Strontium |                   |                            |                                                | ntium-90                             |  |  |
| New Zealand                                                                                                                 | Apr.                                                        | May                                                                           | Jun.              | Apr.                       | May                                            | Jun.                                 |  |  |
| Kaitaia<br>Auckland<br>New Plymouth<br>Havelock North<br>Wellington<br>Greymouth<br>Christchurch<br>Dunedin<br>Invercargill | 0.4<br>0.5<br>0.4<br>0.2<br>0.4<br>1.1<br>0.4<br>0.4<br>0.5 | 03<br>04<br>07<br>02<br>02                                                    | 0.1<br>0.3<br>0.1 | 4<br>4<br>3<br>5<br>6<br>5 | 5<br>3<br>6<br>8<br>3<br>5<br>3<br>3<br>3<br>3 | 2<br>4<br>3<br>2<br>2<br>4<br>3<br>4 |  |  |
| <u>Country-Wide Averages</u><br>Monthly<br>Quarterly                                                                        | 0.5                                                         | 04<br>1.1*                                                                    | 0.2               | .5                         | 4<br>.4                                        | 3                                    |  |  |
| Pacific Islands                                                                                                             |                                                             |                                                                               |                   |                            |                                                | ·                                    |  |  |
| Suva, Fiji<br>Rarotonga                                                                                                     | 0.•4<br>0.•4                                                | N.S.                                                                          | <01<br><01        | 4<br>5                     | <b>N.</b> S.<br>4                              | 2<br>3                               |  |  |

•--- ·· ·

\* This value is the sum of the monthly depositions during the quarter.

N.S. No Sample.

2

| TABLE 4 STRONTIUM-90 AND CAESJUM-137 IN MILK 1969                                                                       |                                                                                 |                                                           |          |    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----|--|--|--|--|
| COLLECTING<br>STATIONS                                                                                                  | STRONTIUM-90<br>pCi/g Ca                                                        | CAESIUM-137<br>pCi/g K                                    |          |    |  |  |  |  |
| Northland<br>Auckland<br>Waikato<br>Taranaki<br>Palmerston North<br>Wellington<br>Westland *<br>Christchurch<br>Dunedin | April - June<br>5.1<br>4.9<br>5.9**<br>9.4<br>10.1<br>4.7<br>16.4<br>2.0<br>2.9 | April<br>17<br>24<br>50<br>102<br>5<br>11<br>46<br>2<br>7 | 23<br>52 |    |  |  |  |  |
| Country-Wide Averages<br>Monthly<br>Quarterly                                                                           | 6 <b>.</b> 8                                                                    | 29                                                        | 28<br>27 | 24 |  |  |  |  |

- \* The Westland Collecting Station was referred to as Greymouth or Hokitika in previous reports.
- \*\* April May only
- \*\*\* No Sample. Results in brackets are estimates used for calculating the country-wide average.

III -

13

-

÷

REPORT No. NRL-F 36

## DEPARTMENT OF HEALTH



QUARTERLY REPORT JULY-SEPTEMBER 1969

# ENVIRONMENTAL RADIOACTIVITY IN NEW ZEALAND

AND

MEASUREMENTS ON SAMPLES FROM FIJI AND RAROTONGA

NATIONAL RADIATION LABORATORY P.O. BOX 1456, CHRISTCHURCH, NEW ZEALAND

# SYMBOLS UNITS AND EQUIVALENTS

# UNITS OF RADIOACTIVITY

| Ci Curie Curie $10^{-3}$ Curies Ci                                                                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------|---|
| pCi picocurie 10 <sup>-12</sup> Curies 2.22 disintegrations per minute                                                               |   |
| UNITS OF LENGTH, AREA, VOLUME AND MASS<br>AND THEIR EQUIVALENTS IN THE IMPERIAL SYSTEM                                               | i |
|                                                                                                                                      |   |
| cm <sub>2</sub> centimetre 0.394 inches                                                                                              |   |
| km <sup>3</sup> square kilometre 0.386 square miles                                                                                  |   |
| m <sup>3</sup> cubic metre 35.31 cubic feet                                                                                          |   |
| litre litre 0.880 quart                                                                                                              |   |
| g gram 0.0353 ounce                                                                                                                  |   |
| NOTES                                                                                                                                | • |
| <ol> <li>Unless otherwise noted, all times given in this report are New Zealand<br/>Standard time i.e. G.M.T. + 12 hours.</li> </ol> |   |
| 2. Radioactive fallout in rain is expressed as:                                                                                      |   |
| (a) Deposition - millicuries per square kilometre $(mCi/km^2)$                                                                       |   |
| (b) Concentration - picocuries per litre (pCi/litre)                                                                                 |   |
| Concentration (pCi/litre) = $\frac{\text{deposition (mCi/km}^2)}{\text{rainfall (cm)}} \times 100$                                   |   |
| Multiply mCi/km <sup>2</sup> by 2.59 to obtain mCi/sq. mile.                                                                         |   |
| 3. The levels of strontium-90 contamination in food and bone are                                                                     |   |
| given in "Strontium Units" i.e. picocuries strontium-90 per gram                                                                     |   |
| of calciumpCi Sr <sup>90</sup> /g Ca.                                                                                                |   |
|                                                                                                                                      |   |
| Similarly caesium-137 results are given as picocuries of caesium-137 per gram of potassiumpCi $Cs^{137}/g$ K.                        |   |
| One litre of whole milk contains approximately:                                                                                      |   |
| 1.2 g of calcium                                                                                                                     |   |
| 1.4 g of potassium.                                                                                                                  |   |
|                                                                                                                                      |   |

۰.

· · · · ·

III - 15

. . . .

#### CONTENTS

SYMBOLS UNITS AND EQUIVALENTS .. 1 . . 2 CONTENTS .. .. . . . . • • . . • • • • .. . . POTENTIAL HEALTH HAZARD - PERMISSIBLE LEVELS OF RADIOACTIVITY 3 LOCATION OF COLLECTING STATIONS IN NEW ZEALAND FIG. 1 .. 4 • • GRAPHICAL SUMMARY OF ROUTINE MEASUREMENTS FIG. 2 5 .. . . . . SUMMARY 6 . . . .

#### RESULTS OF ROUTINE MONITORING OF FALLOUT DURING FIRST QUARTER 1968

| Total Beta A | stivity of | f Air Samp | les, Ta | ble 1. | ••    | • • | **   | • •  | 7  |
|--------------|------------|------------|---------|--------|-------|-----|------|------|----|
| Total Beta A | ctivity of | f Weekly R | ainwate | r Coll | ectio | ns, | Tabl | e 2. | 8  |
| Strontium-90 | in Rain,   | Table 3a.  |         | •• ••  | ••    | ••  | ••   | ••   | 9  |
| Strontium-89 | in Rain,   | Table 3b.  | • •     | •• ••  | ••    | ••  | ••   | ••   | 10 |
| Strontium-90 | and Caest  | ium-137 in | Milk,   | Table  | 4.    |     | ••   | ••   | 11 |

PAGE

# POTENTIAL HEALTH HAZARD

The significance of the levels of radioactivity in environmental samples published in this Report may be understood more readily by comparing these levels with the following "permissible levels for the general population" which have been adopted for use in New Zealand.

These levels have been set as a guide to limit the controlled release of radioactive substances into the environment by licensed users in New Zealand.

They are levels which individually would not require remedial or preventive action and have been chosen to protect the most sensitive age group in the population. It is considered that any risk associated with these levels is exceedingly small and that levels many times as great would involve a hazard which is small compared to commonly accepted risks of life.

"Permissible levels" of Radioactivity

These levels were derived so as to ensure that the dose to any member of the public arising from the controlled use of radioactive materials does not exceed the Dose Limit recommended by the International Commission on Radiological Protection.

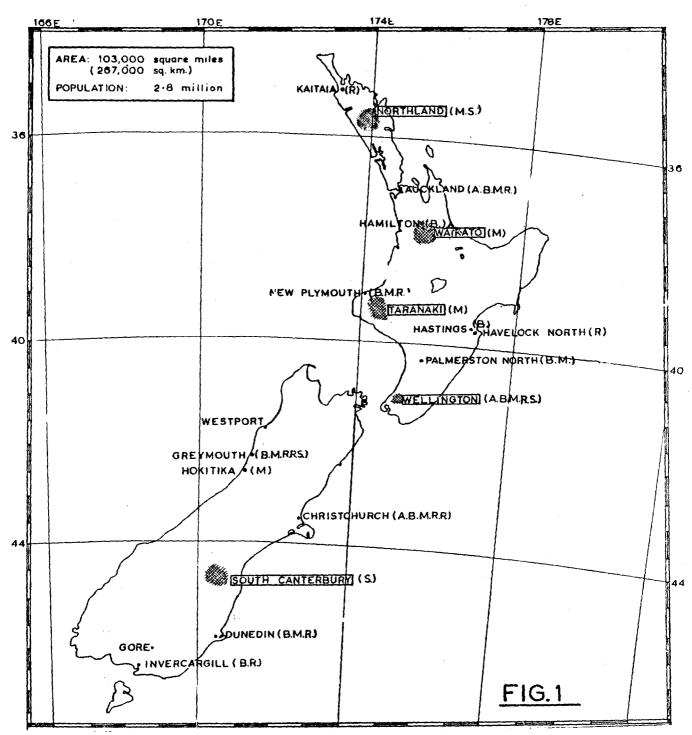
Strontium-90

| In Milk: | 270 Strontium Units - maintained indefinitely in the milk | • |
|----------|-----------------------------------------------------------|---|
| In Bone: | 67 Strontium Units.                                       |   |

Caesium-137

In Milk: 7,000 pCi/g K - maintained indefinitely in the milk.

Iodine-131


In Milk: 200 pCi/litre - as an average intake over one year.

Total Beta Activity of Mixed Fission Products Between 10 and 80 Days Old

In Air:  $300 \text{ pCi/m}^3$  - for continuous breathing.

In Rainwater: 6,000 pCi/litre - for continuous consumption,

III - 17



LOCATION OF COLLECTING STATIONS ESTABLISHED BY THE NATIONAL RADIATION LABORATORY FOR AIR(A), BONE(B), MILK(M), RAINWATER(R), AND SOIL (S), SAMPLES IN NEW ZEALAND one type of collection is performed (e.g. weekly and monthly rainwater collection) the appropriate symbol is shown twice. Collection areas not confined to a single location but extending over part of a province or district are shown thus (NAME)







III - 19

• • • •

ROUTINE MEASUREMENTS

n waa kan ee

#### SUMMARY

#### CENERAL

Results of routine monitoring of fallout in air, rain and milk samples during the third quarter 1969 are tabulated in this heport. These results are summarized on a quarterly basis and are presented graphically in Fig. 2, together with results from previous Quarterly Reports during 1968 and 1969.

Additional information on sumple collection and evaluation, comparison of levels of environmental radioactivity and health hazard assessment is given in the Annual Summary Report for 1968 "ENVIRONMENTAL RADIOACTIVITY IN NEW ZEALAND, Report No.NRL-F33" which also includes the results of extended monitoring of fallout from the French nuclear tests in the Pacific.

#### TOTAL BETA ACTIVITY - INDIVIDUAL STATIONS

As already noted in the reports NRL-F31 to NRL-P35, increased levels of fission products in air and rainwater were measured during the third quarter 1968. These levels resulted from the 1968 series of nuclear tests conducted by France in the Pacific Area between 8 July and 9 September. This series included for the first time the detonation of two hydrogen bombs.

The expected decrease in levels, which had been evident during the months following the previous test series of 1966 and 1967, occurred more slowly following the 1968 nuclear tests. The greater delay in the reduction of fission product levels following the 1968 nuclear tests undoubtedly resulted from the injection of fission debris into higher altitudes when the hydrogen bombs were tested. The subsequent deposition of the debris was thus extended over a longer period.

During the second and third quarters 1969, however, there were significant decreases in the levels of total beta activity of air and rainwater.

The average levels in air during the third quarter 1969 were 0.08 pCi/m<sup>3</sup> at Auckland, 0.06 pCi/m<sup>3</sup> at Vellington and 0.05 pCi/m<sup>3</sup> at Christchurch. During the corresponding period in 1968 the levels were 0.23 pCi/m<sup>3</sup> at Auckland and Wellington, and 0.16 pCi/m<sup>3</sup> at Christchurch.

The total deposition in rain during the third quarter 1969 was 9.1 mCi/km<sup>2</sup> at Greymouth, and 0.4 mCi/km<sup>2</sup> at Christchurch. During the corresponding period in 1968 the deposition was 112.8 mCi/km<sup>2</sup> at Greymouth, and 16.4 mCi/km<sup>2</sup> at Christchurch.

#### SFECIFIC RADIONUCLIDES - COUNTRY-WIDE AVERAGES

1. STRONTIUM-90 IN RAIN The average deposition in rain increased slightly from 0.27 mCi/km<sup>2</sup> during the second quarter 1969 to 0.30 mCi/km<sup>2</sup> during the third quarter 1969. This level is less than one quarter of the highest level previously recorded, i.e., during the first quarter 1965.

2. STRONTIUM-89 IN RAIN The average deposition reached a maximum of 5.1 mC1/km<sup>2</sup> during October 1968, about one month after the conclusion of the 1968 nuclear tests. During the third quarter 1969 levels were about 0.1 mCi/km<sup>2</sup> per month.

3. STONTIUM-90 IN MILK The average level has increased from 6.8 Strontium Units during the second quarter 1969 to 7.9 Strontium Units during the third quarter 1969. The highest level previously recorded was 15.9 Strontium Units during July-August 1964. The average level for the twelve months ending September 1969 (6.6 Strontium Units) is about 2.5% of the "permissible level" for the whole population<sup>(1)</sup>.

4. CAESIUM-137 IN MILK The average level has decreased slightly from 27 pCi/g K during the second quarter 1969 to 24 pCi/g K during the third quarter 1969. The highest level for the twelve nonths ending September 1969 (27 pCi/g K) is less than 0.4% of the "permissible level" for the whole population<sup>(1)</sup>.

(1) See "POTENTIAL HEALTH HAZARD" - Page 3.

III - 20

| TABLE 1                               | т                                            | OTAL BETA ACTIVI                      | TY OF AIR SAMPL                   | ES                                    |                                              |
|---------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------|----------------------------------------------|
|                                       | In Picocuries<br>Fi                          | per Cubic Metre<br>lters changed 3    | Four Days afte<br>times each week | r Collection.                         |                                              |
| AUCK                                  | LAND                                         | WELLI                                 | WELLINGTON CHRISTCHU              |                                       | CHURCH                                       |
| Date<br>Filter<br>Removed             | Total Beta<br>Activity<br>pCi/m <sup>3</sup> | Date<br>Filter<br>Removed             | Total Beta<br>Activity<br>pCi/m3  | Date<br>Filter<br>Removed             | Total Beta<br>Activity<br>pCi/m <sup>3</sup> |
| 2.7.69<br>4.7.69                      | 0.10<br>0.08                                 | 2.7.69<br>4.7.69                      | 0.05<br>0.04                      | 2.7.69<br>4.7.69                      | 0.04<br>0.06                                 |
| 7.7.69<br>9.7.69<br>11.7.69           | 0.09<br>0.07                                 | 8.7.69<br>9.7.69                      | 0.09<br>0.08                      | 7.7.69<br>9.7.69                      | 0.05<br>0.05                                 |
| 14.7.69                               | 0.03<br>0.04<br>0.06                         | 11.7.69<br>14.7.69<br>16.7.69         | 0.03<br>0.04<br>0.04              | 11.7.69<br>15.7.69<br>18.7.69         | 0.04<br>0.04<br>0.04                         |
| 18.7.6 <u>9</u><br>21.7.69            | 0.04<br>0.04                                 | 18.7.69<br>21.7.69                    | 0.04<br>0.03                      | 21.7.69<br>23.7.69                    | 0.04<br>0.05<br>0.07                         |
| 23.7.69<br>25.7.69<br>28.7.69         | 0.08<br>0.07<br>0.04                         | 23.7.69<br>25.7.69<br>28.7.69         | 0.07<br>0.09<br>0.02              | 25.7.69<br>28.7.69<br>30.7.69         | 0.08<br>0.03<br>0.04                         |
| 30.7.69<br>1.8.69                     | 0.05<br>0.09                                 | 30.7.69<br>1.8.69                     | 0.03<br>0.03                      | 1.8.59                                | 0.03                                         |
| Average<br>4.8.69                     | 0.06                                         | Average<br>4.8.69                     | 0.05                              | Average                               | 0.05                                         |
| 6.8.69<br>8.8.69                      | 0.13<br>0.04                                 | 6.8.69<br>8.8.69                      | 0.05<br>0.05<br>0.17              | 4.8.69<br>6.8.69<br>8.8.69            | 0.03<br>0.05<br>0.04                         |
| 11.8.69<br>13.8.69<br>15.8.69         | 0.07<br>0.05<br>0.08                         | 11.8.69<br>13.8.69<br>15.8.69         | 0.05                              | 11.8.59<br>14.8.59                    | 0.05                                         |
| 18.8.69<br>20.8.69                    | 0.13<br>0.10                                 | 18.8.69<br>20.8.69                    | 0.08<br>0.02<br>0.07              | 15.8.69<br>18.8.69<br>20.8.69         | 0.03<br>0.04<br>0.05                         |
| 22.8.69<br>25.8.69<br>27.8.69         | 0.07<br>0.03<br>0.08                         | 22.8.69<br>25.8.69<br>27.8.69         | 0.07<br>0.05<br>0.09              | 25.8.69<br>27.8.69<br>29.8.69         | 0.09<br>0.12<br>0.04                         |
| 29.8.69<br>1.9.69                     | 0.10<br>0.08                                 | 29.8.69<br>1.9.69                     | 0.05                              | 1.9.69                                | 0.04                                         |
| Average<br>3.9.69                     | 0.08                                         | Average                               | 0.07                              | Average                               | 0.05                                         |
| 3.9.69<br>5.9.69<br>8.9.69<br>10.9.69 | 0.09<br>0.09<br>0.11<br>0.03                 | 3.9.69<br>5.9.69<br>8.9.69<br>10.9.69 | 0.03<br>0.12<br>0.09<br>0.05      | 3.9.69<br>5.9.69<br>8.9.69<br>10.9.69 | 0.05<br>0.08<br>0.04<br>0.02                 |
| 12.9.69<br>15.9.69<br>17.9.69         | 0.09<br>0.10<br>0.12                         | 12.9.69<br>15.9.69<br>17.9.69         | 0.07<br>0.08<br>0.09              | 12.9.69<br>15.9.69<br>17.9.69         | 0.07<br>0.05<br>0.05                         |
| 19.9.69<br>22.9.69                    | 0.08<br>0.07                                 | 19.9.69<br>22.9.69                    | 0.06<br>0.05                      | 19.9.69<br>22.9.69                    | 0.04<br>0.04                                 |
| 24.9.69<br>26.9.69<br>29.9.69         | 0.07<br>0.12<br>0.08                         | 24.9.69<br>26.9.69<br>29.9.69         | 0.04<br>0.06<br>0.07              | 24.9.69<br>29.9.69<br>1.10.69         | ().06<br>0.08<br>0.08                        |
| 1.10.69<br>Average                    | 0.10                                         | 1.10.69<br>Average                    | 0.08                              | Average                               | 0.0.5                                        |
| Quarterly<br>Average                  | 0.09                                         | Quarterly<br>Average                  | 0.06                              | Quarterly<br>Average                  | 0.05                                         |

RESULTS OF ROUTINE MONITORING OF FALLOUT DURING THIRD QUARTER 1969

截

# LII - 21

.

| TABLE 36 STRO          | NTIUM-89  | IN RAIN T                                        | HIRD QUARTER | 1969        |                                    |                |  |  |
|------------------------|-----------|--------------------------------------------------|--------------|-------------|------------------------------------|----------------|--|--|
| COLLECTING<br>STATIONS | 13        | DEPOSITION<br>mCi/km <sup>2</sup> (at mid-month) |              |             | RATIO<br>Strontium-89/Strontium-90 |                |  |  |
| New Zealand            | July      | Aug.                                             | Sept.        | July        | Aug.                               | Sept.          |  |  |
| Kaitaia                | 0.2       | <0.1                                             | 0.2          | 3<br>2      | 1                                  | 1              |  |  |
| Auckland               |           | 0.3                                              | (0.2)**      | 2           | 2                                  | (1)**          |  |  |
| New Plymouth           |           | .0.3                                             |              | 2           | 2                                  | (1)**          |  |  |
| Havelock North         | <0.1      |                                                  | <0.1         | 3<br>2<br>2 | 2                                  | <1             |  |  |
| Wellington             | <u>ii</u> | 0.1                                              | 0.1          | 2           | 1                                  | 2              |  |  |
| Greymouth              |           | 0.2                                              | 0.5          | 2           | 2                                  | 1              |  |  |
| Christchurch           |           | 0.2                                              |              | 2           | 1                                  | <1             |  |  |
| Dunedin                |           | <0.1                                             |              | 1<br>2      | 2<br>1                             | $\leq 1$       |  |  |
| Invercargil1           | <0.1      | <0.1                                             | 0.2          | 2           | L                                  | 1              |  |  |
| Country-Wide Averages  |           |                                                  |              |             |                                    |                |  |  |
| Monthly                | 0.1       | 0.1                                              | 0.2          | 2           | 2                                  | 1              |  |  |
| Quarterly              |           | 0.4*                                             |              |             | 2                                  |                |  |  |
| Pacific Islands        | 1         |                                                  |              |             |                                    |                |  |  |
| Suva, Fiji             | 0.6       | <0.1                                             | ***          | 4           | <1                                 | <del>***</del> |  |  |
| • -                    |           | •                                                | ***          |             | -                                  | ***            |  |  |
| Rarotonga              | 0.1       | <0.1                                             | ***          | 3           | <1                                 | ~ ~ ~          |  |  |

•

.....

.

\* This value is the sum of the monthly depositions during the quarter.

\*\* Results in brackets are estimates used for calculating the country-wide average.

\*\*\* Sample transport delay. Results to be published in the fourth quarterly report.

| TABLE 4 STRONTIUM-90 A | ND CAESIUM-137 IN MIL    | K THIRD QUA | ARTER 1969                             |        |  |  |  |
|------------------------|--------------------------|-------------|----------------------------------------|--------|--|--|--|
| COLLECTING<br>STATIONS | STRONTIUM-90<br>pCi/g Ca |             | CAESIUM-137<br>pCi/g K                 |        |  |  |  |
|                        | July - Sept.             | July        | Aug.                                   | Sept.  |  |  |  |
| Northland              | 9.3                      | 15          | 25                                     | 50     |  |  |  |
| Auckland               | 7.2                      | 39          | -25                                    | 27     |  |  |  |
| Waikato                | 6.9                      | 27          | 29                                     | 35     |  |  |  |
| Taranaki               | 11.7                     | 45          | 92                                     | 113    |  |  |  |
| Palmerston North       | 5.6                      |             | 2                                      | 3      |  |  |  |
| Wellington             | 5.5                      | . 5<br>8    | 2                                      | 3<br>7 |  |  |  |
| Westland *             | 20.7                     | 16          | 18                                     | 44     |  |  |  |
| Christchurch           | 1.8                      | 2           | くユ                                     | <1     |  |  |  |
| Dunedin                | 2.7                      | 3           | (1)**                                  | <1     |  |  |  |
| Country-Wide Averages  |                          |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |  |  |  |
| Monthly                |                          | 18          | 22                                     | 31     |  |  |  |
| Quarterly              | 7.9                      |             | 24                                     |        |  |  |  |

- \* The Westland Collecting Station was referred to as Greymouth or Hokitika in previous reports.
- \*\* No sample. Result in brackets is an estimate used for calculating the country-wide average.

2. Department of Scientific and Industrial Research The Institute of Nuclear Sciences Lower Hutt, New Zealand

. ... to a bed all a shall a she as

# RADIOISOTOPES IN RAINWATER:

# Results for

<u>, a</u>

۰.

| January-April 1968      | report No. 72 |  |
|-------------------------|---------------|--|
| May - August 1968       | report No. 73 |  |
| September-December 1968 | report No. 74 |  |

### INS 50/113/-WM

#### RADIOISOTOPES IN RAINWATER

Report No 72

Period: January - April 1968

Station: Gracefield, Lower Hutt, New Zealand, S 41° 14' E 174° 55'

Stainless steel collector 1 ft diameter

| Sampling Period<br>start finish             | Activity:<br>Sr <sup>90</sup> | microcuri<br>Ba <sup>140</sup> | es/sq.mile<br>Cs <sup>137</sup> | $\frac{\mathrm{Ba}^{140}}{\mathrm{Sr}^{90}}$ | <u>Cs</u> 137<br>Sr90 | Rain<br>Inches | Remarks                                 |
|---------------------------------------------|-------------------------------|--------------------------------|---------------------------------|----------------------------------------------|-----------------------|----------------|-----------------------------------------|
| 1-2 2-1                                     | 248 <u>+</u> 20<br>(96)*      |                                | 200 <u>+</u> 12<br>(77)*        |                                              | 0.81                  | 4.69           | monthly pot sample                      |
| Accumulated total<br>or<br>average for 1968 | 248 ± 20<br>(96)*             |                                | 200 ± 12<br>(77)*               |                                              | 0.81                  | 4.69           |                                         |
| 2-1 3-1                                     |                               |                                |                                 |                                              |                       |                | recovery so low, no<br>results recorded |
| Accumulated total<br>or<br>average for 1968 | 248 <u>+</u> 20<br>(96)*      |                                | $200 \pm 12$<br>(77)*           | -                                            | 0.81                  | 7.33           |                                         |
| 3-1 4-1                                     | 41.5±3<br>(16)*               |                                | 22.3 ± 1.6<br>(8.6)*            |                                              | 0.54                  | 0.66           | monthly pot sample                      |
| accumulated total<br>average For 1968       | 289 ± 20<br>(112)*            |                                | 223 ± 12<br>(85.6 <b>)</b> *    |                                              | 0.77                  | 7.99           |                                         |
| 4-1 5-1                                     | 234 <u>+</u> 16<br>(90)*      |                                | 163 <u>+</u> 27<br>(63)*        |                                              | 0.70                  | 14.36          | monthly pot sample                      |
| accumulated total<br>or<br>average for 1968 | 523 ± 25<br>(202)*            |                                | 386 <u>+</u> 30<br>(148.6)*     | ••                                           | 0.74                  | 22.35          |                                         |

\* Microcuries per square kilometer

Note: Errors quoted are purely counting errors and do not include experimental errors or calibration uncertainties.

#### INSTITUTE OF NUCLEAR SCIENCES

# Report 113/- WJM

2

#### RADIOISOTOPES IN RAINWATER

Report No 73, Period: May 1968

Station - Gracefield, Lower Hutt, New Zealand S 41°14' E 174°55'

Stainless steel collector 1 fc diameter.

| Sampling period |                           | Activity: Microcuries/sq. mile |                                  |                                        | 1/10, 00 137.                       | 137, 90                             |              |                    |
|-----------------|---------------------------|--------------------------------|----------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|--------------|--------------------|
| start           | finish                    | Sr <sup>90</sup>               | Ba <sup>140</sup>                | Cs <sup>137</sup>                      | Ba <sup>140</sup> /Sr <sup>90</sup> | Cs <sup>137</sup> /Sr <sup>90</sup> | Rain, inches | Remarks            |
| 5 - 1           | 6 - 1                     | 149 ± 11.0<br>(58.0)*          |                                  | 175 <u>+</u> 8<br>(58)*                |                                     | · 1.17                              | 8.89         | Monthly pot sample |
|                 | ated cotal<br>age for 968 | 672 <u>+</u> 27<br>(259)*      |                                  | 561 ± 31<br>(217)*                     |                                     | د0.8                                | 31.24        |                    |
| 6 - 1           | 7 - 1                     | 123 ± 8<br>(48)*               |                                  | 151 ± 2<br>(58)*                       |                                     | 1.23                                | 7.72         | Monthly pot sample |
|                 | aced total<br>age for 968 | 795 ± 28<br>(307)*             |                                  | 712 <u>+</u> 31<br>(275)*              |                                     | 0.90                                | 38.96        |                    |
| 7 - 1           | 8 - 1                     | 112 ± 7.3<br>(43)*             | 45,400 <u>±</u> 380<br>(17,900)* | 155 ± 24<br>(55)*                      | 404.0                               | 1.39                                | <i>6.9</i> 0 | Monthly pot sample |
|                 | ated total<br>age for 968 | 907 ± 29<br>(350)*             | 45,400 <u>+</u> 380<br>(17,900)  | 987 ± 31<br>(330)*                     | 404.0                               | 1.09                                | 45.86        |                    |
| 8 - 1           | 9 - 2                     | 93.5 ± 3.2<br>(35)*            | 8,360 <u>+</u> 124<br>(3240)*    | 116 ± 1.35<br>(45)*                    | 89.0                                | 1.23                                | 2.59         | Monthly pot sample |
|                 | ated total<br>age for 968 | 1000.5± 30<br>(385)*           | 53,760 ± 392<br>(21,140)*        | 110 <u>5</u> + 31.5<br>(37 <b>5)</b> * | 246                                 | 1.10                                | 48.45        |                    |

\* microcuries per square kilometer

Note: Errors quoted are purely counting errors and do not include experimental errors or calibration uncertainities.

III - 26

÷.

# RADIOISOTOPES IN RAINWATER.

#### Report No. 74 - September 1968 to December 1968

Station - Gracefield, Lower Hutt S41014' E174055'

### Stainless Steel Collector lft. diameter

| Samplin<br>Start | g Period<br>Finish       | Acti<br>Sr <sup>90</sup>     | vity microcuri<br>Ba <sup>140</sup> | e/Sq. mile<br>Cs <sup>137</sup> | Ba <sup>140</sup> /Sr <sup>90</sup> | Cs <sup>137</sup> /9r <sup>90</sup> | Rain<br>Inches | Remarks                                             |
|------------------|--------------------------|------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|----------------|-----------------------------------------------------|
| 9 - 2            | 10 - 1                   | 153 <u>+</u> 6.5<br>59*      | 4530 <u>+</u> 67.1<br>1750*         | 186 <u>+</u> 1.9<br>71.5*       | 29_6                                | 1.22                                | 4,43           | Monthly Pot Sample                                  |
|                  | ted Total<br>ge for 1968 | 1153,5 <u>+</u> 31<br>445*   | 58290 <u>+</u> 400<br>22890*        | 1289 <u>+</u> 32.0<br>446.5*    | 50,5                                | 1.11                                | 52,88          |                                                     |
| 10 - 1           | 11 - 1                   | 262 <u>+</u> 6.4<br>105*     | 6360 <u>+</u> 81<br>2430*           | 555 <u>+</u> 3.8<br>214*        | 24                                  | 2.12                                | 8.40           | Monthly Pot Sample<br>Sr <sup>90</sup> probably low |
|                  | ted total<br>ge for 1968 | 1415.5 <u>+</u> 31.5<br>550* | 64,590 <u>+</u> 408<br>25,320*      | 1744 <u>+</u> 32.0<br>660.5*    | 46                                  | 1,21                                | 61 <b>.29</b>  |                                                     |
| 11 - 1           | 12 - 1                   | 190 <u>+</u> 6.4<br>73*      | 543 <u>+</u> 32.5<br>214*           | 214 <u>+</u> 6.7<br>82.5*       | 2.93                                | 1,12                                | 2.07           | Monthly Pot Sample                                  |
|                  | ted total<br>ge for 1968 | 1605.5 <u>+</u> 32.0<br>623* | 65,133 <u>+</u> 420<br>25,534*      | 1958 <u>+</u> 32.7<br>743*      | 40.7                                | 1.20                                | 63,35          |                                                     |
| 12 - 1           | 2 - 1 - 69               | 178 <u>+</u> 4.0<br>69*      | -                                   | 296 <u>+</u> 3.2<br>114*        |                                     | 1.69                                | 4.60           | Northly Pot Sample<br>Sr <sup>90</sup> probebly low |
|                  | ted total<br>ge for 1968 | 1783.5 <u>+</u> 32.0<br>692* | 65,133 <u>+</u> 420<br>25,534*      | 2254 <u>+</u> 33<br>857*        | 36,6                                | 1.24                                | 67.95          |                                                     |

\* Microcuries per square kilometer

Note errors quoted are purely counting errors and do not include experimental errors or calibrations uncertainties.

1

÷.,

Cesium-137 in Various Chicago Foods (Collection Month January, 1970)

S. S. Brar and D. M. Nelson Radiological Physics Division Argonne National Laboratory Argonne, Illinois 60439

Since April, 1961, the <sup>137</sup>Cs and potassium content of the Chicago portion of Tri-City Diet Sampling Program has been determined<sup>1-4</sup> in bulk food samples by gamma ray spectrometry using a 4" x 4" NaI (T1) crystal. The individual food components were counted for a minimum of 100 minutes, and from these measurements composite daily and yearly food intakes were obtained. Cesium-137 activity in food, now, is an order of magnitude lower than it was a few years ago; consequently, a new procedure for these measurements has been adopted in order to improve accuracy. The same variety of foods (all fresh vegetables; all fresh fruits, etc.) are composited before measurement, and the samples are counted a minimum of 400 minutes. The results of the January, 1970, quarter are tabulated in Tables I and II.

\*Work performed under the auspices of the U. S. Atomic Energy Commission.

Table I

# Cesium-137 in Chicago Diets (Adults)

# January, 1970

|                     |       | Potassium   | 137 <sub>Cs</sub><br>pCi/kg | Potassium<br>g/yr | 137 <sub>Cs</sub><br>pCi/yr |
|---------------------|-------|-------------|-----------------------------|-------------------|-----------------------------|
|                     | kg/yr | g/kg        | pur/kg                      | g/yr              | po1/91                      |
|                     |       | 1.0         | 18                          | 37                | 666                         |
| White Bread         | 37    | 1.0         | 39                          | 29                | 429                         |
| Whole Wheat Bread   | 11    | 2.6         |                             |                   | 429                         |
| Eggs                | 16    | 1.3         | 0.                          | 21                | 0                           |
| Fresh Vegetables    | 43    | 3.5         | · 0                         | 151               | -                           |
| Root Vegetables     | 17    | 2.9         | 0                           | 49                | 0                           |
| Milk                | 221   | <b>1.</b> 5 | 12                          | 332               | 2652                        |
| Poultry 🔸           | 17    | 2.4         | 11                          | 41                | 187                         |
| Fresh Fish          | 8     | 3.7         | 32                          | 30                | 256                         |
| Flour               | 43    | 1.1         | 21                          | 47                | 903                         |
| Macaroni            | 3     | 2.2         | 28                          | 7                 | 84                          |
| Meat                | 73    | . 3.3       | 28                          | 241               | 2044                        |
| Dried Beans         | 3     | 12.5        | 9                           | 38                | 27                          |
| Fresh Fruit         | 68    | 2.3         | 0                           | 156               | 0                           |
| Potatoes            | 45    | 4.2         | 8                           | 189               | 360                         |
| Canned Fruits       | 26    | 1.0         | 14                          | <b>2</b> 6        | 364                         |
| Canned Fruit Juices | 19    | 1.7         | 18                          | 32                | 342                         |
| Canned Vegetables   | 20    | .8          | 0                           | 16                | 0                           |
| · · ·               |       |             |                             |                   |                             |
| Tot <b>al/yr</b>    |       |             |                             | 1442              | 8314                        |
| Total/day           |       |             |                             | 4.0               | 23                          |

\* It is assumed in arriving at the average that nine times more ocean fish is consumed than fresh water fish.

# Table II

# Cesium-137 in Chicago Diets

# (Infants)

# January, 1970

|                 | kg/yr | Pot <b>assi</b> um<br>g/kg | 137 <sub>Cs</sub><br>pCi/kg | Potassium<br>g/yr | 137 <sub>Cs</sub><br>pCi/yr |
|-----------------|-------|----------------------------|-----------------------------|-------------------|-----------------------------|
| Evaporated Milk | 137   | 3.2                        | 34                          | 438               | 4658                        |
| Formula Milk    | . 37  | 1.7                        | 30                          | 63                | 1110                        |
| Cereals         | 8     | 6.9                        | 26                          | 55                | 208                         |
| Fruits          | 23    | 1.3                        | 8                           | 30                | 184                         |
| Meats           | 17    | 2,2                        | 28                          | 37                | 476                         |
| Vegetables      | 23    | 2.2                        | 0                           | 51                | 0                           |
| Total/yr        |       |                            |                             | 674               | 6636                        |
| Total/day       |       |                            |                             | 1.8               | 18                          |

#### References

- S. S. Brar, et al., USAEC Report No. HASL-146, Cs-137 in Various Chicago Diets, pp. 225-232, July 1, 1964.
- 2. J. Rivera and J. J. Kelly, USAEC Report No. HASL-144, Cs-137 in Tri-City Diets, pp. 228, April 1, 1964
- 3. J. Rivera and J. H. Harley, USAEC Report No. HASL-147, Contributions to the Study of Fallout in Food Chains, pp. 31-35, July, 1964.
- S. S. Brar and D. M. Nelson, USAEC Report No. HASL-217, Cs-137 in Various Chicago Foods, pp. III-20 to III-23, January 1, 1970.

5.

# EURATOM JOINT NUCLEAR RESEARCH CENTRE

# ISPRA ESTABLISHMENT

Protection Service

Site Survey and Meteorology Section

QUARTERLY REPORT

The Euratom Ispra Establishment is located in Northern Italy 58 Km NW away from Milan and 14 Km W from Varese.

The activity levels shown in this report represent weaponstest fallout, and do not reflect any contamination from the site.

# SAMPLE COLLECTION

# a. Air

Air is drawn by pumps through paper filters at the rate of, at least,  $500 \text{ m}^3$  / day, measured by gas meter.

The single daily filters are measured for gross beta radioactivity and then pooled to give monthly samples, for gamma spectrometry and radiochemical analyses.

b. Wet and dry deposition

These samples are collected monthly by means of four  $1 \text{ m}^2$  stainless steel funnels, having the bottom always covered with deionized water. The collected water is evaporated and the dry residue analysed.

c. Milk

Milk is collected twice a week in four small local dairies to give 8 liters / month. About six liters dry matter are submitted to gamma spectrometry and two liters ashed for radiochemical determination of strontium-90.

# CHEMICAL PROCEDURES AND COUNTING TECHNIQUES

- a. Strontium-90 is separated by the fuming nitric acid precipitation and then purified through hydroxides and chromates precipitations. The activity of the final strontium carbonate and yttrium oxalate precipitates is measured in low level anticoincidence beta counters.
- b. Cesium-137 is measured by direct gamma spectrometry on the unprocessed or dried samples and, whenever it is necessary, by gamma spectrometry after chemical separation. This is performed by filtration of the solution, obtained dissolving the sample, through a thin AMP (ammonium molybdophosphate) layer, by which cesium is retained. Details of this procedure may be found in the paper by E. Van der Stricht issued on "Radiochemical Acta" <u>3</u>, 193-199 (1964).
- c. Gamma emitting nuclides are measured by direct gamma spectrometry, using, also the spectrum stripping technique.
- d. Plutonium-239+240 is separated by anion exchange and electrodeposition; details of the procedure may be found in the paper by M.C. de Bortoli: "Radiochemical determination of plutonium in soil and other environmental samples", Anal. Chem. <u>39</u>, 375 (March 1967).

The activity is measured in a Frish grid ionisation chamber connected to a multichannel analyser.

# EXTRAPOLATION OF THE DATA

Except when otherwise stated, the data presented in this report are extrapolated to the last day of the collecting period.

## FALLOUT DEPOSITION

### 1969

SITE : ISPRA

III

ι ω 5 LAT. 45° 49' N

LONG, 8° 37' E

ALT. 250 m

Sale and the

| " Gross bet         | ta (1)                              | 90 <sub>Sr</sub>                       | 89 <sub>Sr</sub>                                                                           | 137 <sub>Cs</sub>                                                                                                                           | 239 <sub>Pu</sub>                                                                                                                                                            | 238 <sub>Pu</sub>                                                                                                                                                                                                                                                                                       | Precipitation                                                                                                                                                                      |
|---------------------|-------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mCi/Km <sup>2</sup> | 1                                   | mCi/Km <sup>2</sup>                    | mCi/Km <sup>2</sup>                                                                        | mCi/Km <sup>2</sup>                                                                                                                         | Ci/Km <sup>2</sup>                                                                                                                                                           | µCi/Km <sup>2</sup>                                                                                                                                                                                                                                                                                     | mm                                                                                                                                                                                 |
| 0.78                | 11-11                               | 17<br>11<br>11<br>11<br>11<br>第二<br>11 | t<br>t<br>t<br>t ¥<br>t                                                                    | E<br>E<br>E 30<br>E                                                                                                                         | t<br>t<br>t<br>T                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                                                                                                |
| 3.80                | 11-12                               | 0.073                                  | 0.20                                                                                       | 0.098                                                                                                                                       | t<br>t<br>t ¥<br>t                                                                                                                                                           | t<br>t<br>t X<br>t                                                                                                                                                                                                                                                                                      | 123.4                                                                                                                                                                              |
| 0.95                | 13-1-70                             | 0,012                                  | 0.008                                                                                      | 0.013                                                                                                                                       | 0.22                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                    | 22.4                                                                                                                                                                               |
|                     | mCi/Km <sup>2</sup><br>0.78<br>3.80 | 0.78 11-11<br>3.80 11-12               | mCi/Km <sup>2</sup> Date(2) mCi/Km <sup>2</sup><br>0.78 11-11 <b>x</b><br>3.80 11-12 0.073 | mCi/Km <sup>2</sup> Date (2)     mCi/Km <sup>2</sup> mCi/Km <sup>2</sup> 0.78     11-11     #     #       3.80     11-12     0.073     0.20 | mCi/Km²       Date(2)       mCi/Km²       mCi/Km²       mCi/Km²         0.78       11-11       #       #       #         3.80       11-12       0.073       0.20       0.098 | mCi/Km <sup>2</sup> Date (2)         mCi/Km <sup>2</sup> mCi/Km <sup>2</sup> mCi/Km <sup>2</sup> mCi/Km <sup>2</sup> mCi/Km <sup>2</sup> 0.78         11-11         #         #         #         #         #         #           3.80         11-12         0.073         0.20         0.098         # | $mCi/Km^2$ $Date(2)$ $mCi/Km^2$ $mCi/Km^2$ $mCi/Km^2$ $\mu Ci/Km^2$ $\mu Ci/Km^2$ 0.78       11-11 <b>x x x x x</b> 3.80       11-12       0.073       0.20       0.098 <b>x x</b> |

(1) Potassium-40 equivalent (40 mg/cm<sup>2</sup>).

(2) Day and month of the gross beta measurement.

**x** Data not yet available.

## AIR RADIOACTIVITY

## 1969

SITE: ISPRA

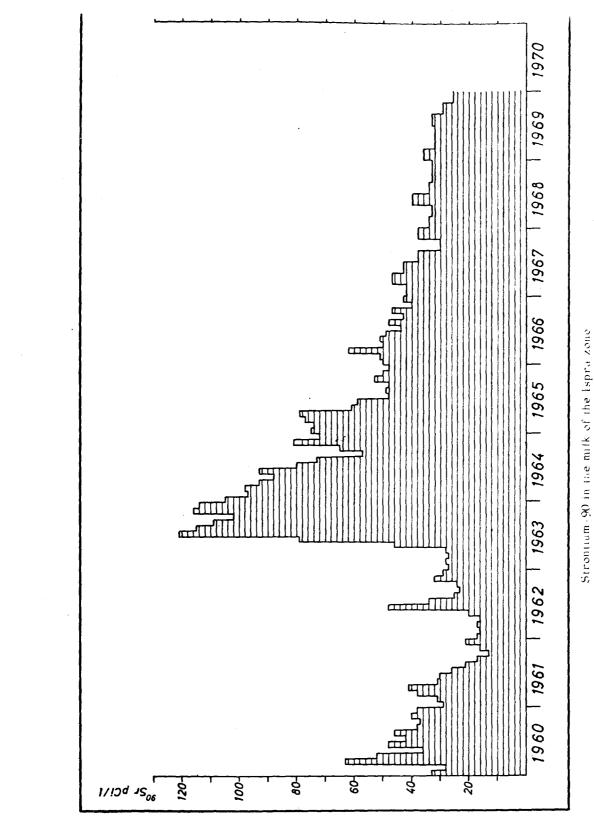
•

A LAT. 45° 49' N

LONG. 8° 37' E

\_

ALT. 250 m


-

.....

| Month    | Gross beta<br>pCi/m <sup>3</sup> | <sup>90</sup> Sr<br>10 <sup>-3</sup> pCi/m <sup>3</sup> | <sup>89</sup> Sr<br>10 <sup>-3</sup> pCi/m <sup>3</sup> | <sup>137</sup> Cs<br>10 <sup>-3</sup> pCi/m <sup>3</sup> | 239 <sub>Pu</sub><br>10 <sup>-5</sup> pCi/m <sup>3</sup> | 238 <sub>Pu</sub><br>10 <sup>-5</sup> pCi/m <sup>3</sup> |
|----------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| October  | 0.22                             | 1.6                                                     | 3.6                                                     | 1.8                                                      | 3.7                                                      | 0.40                                                     |
| November | 0.12                             | 0.95                                                    | 2.2                                                     | 1.7                                                      | 2.3                                                      | 0.44                                                     |
| December | 0.14                             | 1.5                                                     | 1.9                                                     | 2.1                                                      | 1.5                                                      | 0.41                                                     |
|          | 1<br>1<br>1                      | f<br>t<br>t                                             | t<br>t<br>t                                             | t<br>4<br>1<br>8                                         |                                                          | <br> <br> <br>                                           |

III - 36

4



G.B. 24.11.69

•••

III - 37

## PART IV

## RECENT PUBLICATIONS RELATED TO RADIONUCLIDE STUDIES

Recent Publications Related to Radionuclide Studies

Aarkrog, A. On the Direct Contamination of Rye, Barley, Wheat and Oats with 85sr, 134cs, 54Mn and 141ce Radiation Botany, 9, pp 357-366, 1969 Anderson, T. Small-scale Variations of the Contamination of Rain Caused by Washout from the Low Layers of the Atmosphere Tellus, 21, No. 5, 1965 Avramyenko, A.S. and Makhonko, K. P. Radioactivity of Raindrops Atmospheric and Oceanic Physics, 5, No. 6, pp 647-648, 1969 Besson, A., Prigent, Y., and Van-Kote, F. Application of Mercury Cathode Electrolysis to Fission Product Separation Rapport CEA-R-3788 Birge, S.J., Berman, M., Peck, W.A. and Whedon, G.D. Study of Calcium Abscrption in Man: A Kinetic Analysis and Physiologic Model J. of Clinical Investigation, 48, No. 9, September 1969 Blanchard, R. L. and Moore, J. B. <sup>210</sup>Pb and <sup>210</sup>Po in Tissues of Some Alaskan Residents as Related to Consumption of Caribou or Reindeer Meat Health Physics, 18, No. 2, February 1970 Book, S. A. Fallout Cs-137 Accumulation in Two Subpopulations of Black-tailed Deer (Odocoileus Hemionus Columbianus) N70-13009, UCD-34-P-104-14, Avail: CFSTI California Univ. Radiobiology Lab., Davis, Calif. Bove, J.L. and Siebenberg, S. Airborne Lead and Carbon Monoxide at 45th Street, NYC Science, 167, No. 3920, February 13, 1970

Boulenger - X. de Maere LaRetombée Radio-Active Mesurée A Mol Rapport D'Avancement Du Department "Mesure et Controle Des Radiations" Anné 1968, Jaar, 144, Avenue E Plasky, Bruxelles 4, Belgigue Cambray, R.S., Fisher, E.M., Brocks, W.L., and Peirscn, D.H. Radioactive Fallout in Air and Rain Results to the Middle of 1969 AERE R6212, Harwell, Berkshire, 1969 Cameron, J.R., Jurist, J.M., Screnson, J.A. and Mazess, R.B. New Methods of Skeletal Status Evaluation in Space Flight Aerospace Medicine, <u>40</u>, No. 10, October 1969 Carach, J. and Csupka, S. Influence of Fallout on Sr-90 in Wheat, 1963-1965 Biologia, <u>22</u>, 422-30, (1967) Carr, T.E.F., Nolan, J. and Durakovic, A. Effect of Alginate on the Abosrption and Excretion of 203 Pb in Rats fed Milk and Normal Diets Nature, 224, December 13, 1969 Chase, H. C. Infant Mortality and Weight at Birth: 1960 United States Birth Cohort American Journal of Public Health, 59, No. 9, September 1969 Clarke, J. F. A Meteorological Analysis of Carbon Dioxide Concentrations Measured at a Rural Location Atmospheric Environment, July 1969 Commoner, B. Evaluating the Biosphere Science Journal, 5A, No. 4, October 1969 Csupka, S., Carach, J., Petrasova, M. Content of Sr-90 and Cs-137 in Leaf and Root Vegetables in 1964 in and their Ecology Biologia 21, pp 432-7 (1966)

Csupka, S., Carach, J., Petrasova, M. Dietary Intake of Radiostrontium and Radiocesium in 1965 Bratislavske Lekarske Listy 47, 6, 41-8(1967) Danali, S.D. On the Radioactivity of Summer Clouds on Mount Olympus Pure & Applied Geophysics, 75, 1969/IV, pp 263-267 deBortoli, M. and P. Gaglione Environmental Radioactivity - Ispra 1968 EUR 4412e, January 1970 Duggan, M. J. and Howell, D. M. Relationship Between the Unattached Fraction of Airborne RaA and the Concentration of Condensation Nuclei Nature, 224, No. 5225, December 20, 1969 Earthquakes and Nuclear Detonations Science, 167, No. 3920, pp 1011-1014 Edwards, A. An Appraisal of the Correlation Technique Applied to the Measurement of Low Levels of Radioactivity Int. Journal of Applied Radiation and Isotopes, August 1969 Environmental Radioactivity in New Zealand Report No. NRL F36 National Radiation Lab., P. O. Box 1456, Christchurch, N. Z. Giraytys, J. Symposium on Meteorological Observations and Instrumentations Bulletin of the American Meteorological Society, 50, Nc. 9, September 1969 Gonda, A., Wong, N., Seely, J.F. and Dirks, J. H. The Role of Hemodynamic Factors on Urinary Calcium and Magnesium Excretion Canadian J. of Physiology & Pharmacology, 47, No. 7, July 1969

IV - 4

11

ية أ مورد

Haberer, K. Radionuclides in Water Verlag Karl Thiemig Kg., Munchen Harrison, G.E., Carr, T.E.F., Sutton, A. and Humphreys, E.R. Effect of Alginate on the Absorption of Lead in Man Nature, 224, No. 5224, December 13, 1969 Holtzman, R.B. Sources of 210 Pb in Uranium Miners Health Physics, 18, No. 2, February 1970 Hoover, W. L., Reagor, J.C. and Garner, J.C. Extraction and Atomic Absorption Analysis of Lead and Plant and Animal Products J. of the Association of Official Analytical Chemists, Vol. 52, No. 4, July 1969 Howard, E.B., Clarke, W.J., Karagianes, M.T. and Palmer, R.F. Strontium-90 Induced Bone Tumors in Miniature Swine Radiation Research, Vol. 39, No. 3, September 1969 Husdan, H. and Rapoport, A. Estimation of Calcium, Magnesium and Phosphorus in Diet and Stool Clinical Chemistry, 15, No. 8, August 1969 Jones, J.E., Jacobs, W.H., Shane, S.R. and Flink, E.B. Magnesium Balance Studies in Chronic Alcoholism Annals of the N. Y. Academy of Sciences, 162, Article 2, August 15, 1969 Keipert, J.A. Primary Hypomagnesaemia with Secondary Hypocalcaemia in an Infant The Medical J. of Australia, Vol. 2, No. 5, August 2, 1969 Korns, R. F. Relationship of Water Fluoridation to Bone Density in two New York Towns Public Health Reports, 84, No. 9, September 1969

Lalit, B. Y. Dependence of Strontium-90 in Milk on its Concentrations in Air and Surface Deposition J. of Scientific and Industrial Research, 26, No. 9, pp 372-375, 1967 Lalit, B. Y. and Chandrasekaran, V. R. Radiostrontium in the Air and Surface Deposition J. of Scientific and Industrial Research, 27, No. 9, pp 335-338, 1968 Lindop, P. J. and Rotblat, J. Sr-90 and Infant Mortality Nature, 224, No. 5226, December 27, 1969 Lutwak, L., Whedon, G.D., Lachance, P.A., Reid, J.M. and Lipscomb, H.S. Mineral Electrolyte and Nitrogen Balance Studies of the Gemini-VII Fourteen-day Orbital Space Flight The J. of Clinical Endocrinology & Metabolism, 29, No. 9, September 1969, pp 1140-1156 Marshall, J. H., Rundo, J. and Harrison, G.E. Retention of Radium in Man Radiation Research, 39, No. 2, August 1969 Murtalen, C. A., Cabrejas, M. L., Soto, R. J. Isotopic Determination of Intestinal Calcium Absorption in Normal Subjects Metabolism, 18, No. 5, May 1969 Mejdahl, V. Measurement of Environmental Radiation Intensity with Thermoluminescent CaSO<sub>4</sub>: D<sub>v</sub> Health Physics, 18, No. 2, February 1970 Mishra, U.C., Kerala Varma, R. and Kamath, P.G. Cesium-137 and Potassium in Indian Whole Milk Journal of Scientific and Industrial Research, 28, No. 9, pp 354-358, 1969

ى. مىمە مەسەمىرى بىرىمە بىلار مەسەم مەسە

Mitchell, N. T. Radioactivity in Surface and Coastal Waters of the British Isles - 1968 Technical Report FRL-5 Ministry of Agriculture, Fisheries & Food Hamilton Dock Lowestoft, Suffolk, November 1969 Miyake, Y. and Kanazawa, T. Atmospheric Ozone and Radioactive Fallout Papers in Meteorology & Geophysics, Vol. XVII, No. 4, 1967 Meteorological Research Institute, Japan Miyake, Y., Katsuragi, Y. and Sugimura, Y. Deposition of Plutonium in Tokyo through the end of 1966 Papers in Meteorology & Geophysics, Vol. XIX, No. 2, 1968 Meteorological Research Institute, Japan Murozumi, M., Chow, T. J. and Patterson, C. Chemical Concentrations of Pollutant Lead Aerosols, Terrestrial Dusts and Sea Salts in Greenland and Antarctic Snow Strata Geochimica et Cosmochimica Acta, Volume 33, 1969 National Institute of Radiological Sciences Annual Report 1968-1969 NIRS-8, October 1969 Science & Technology Agency, Japan Neave, M. The Nutrition of Polynesian Children Tropical and Geographical Medicine, 21, No. 3, September 1969 Newell, R., Vincents, D.G., and Kidson, J.W. Interhemispheric Mass Exchange from Meteorological and Trace Substance Observations Tellus, <u>21</u>, No. 5, 1969 Oliver, V. J. Circulation in the Tropics as Revealed by Satellite Data Bulletin of the American Meteorological Society, Volume 50, No. 9, September 1969

Osborne, R. V. Performance of an Automatic Analyser for Tritium in Urine Health Physics, 18, No. 1, January 1970 Page, A. L., and Ganje, T. J. Accumulations of Lead in Soils for Regions of High and Low Motor Vehicle Traffic Density Environmental Science & Technology, 4, No. 2, February 1970 Palma, R.J., Reinbold, P.E. and Pearson, K.H. Determination of Calcium, Strontium, Barium, and Yttrium by Spectropolarimetric Analysis Analytical Letters 2(10), 553-564 (1969) Peakall, D. B. Effect of DDT on Calcium Uptake and Vitamin D Metabolism in Birds Nature, 224, No. 5225, December 20, 1969 Prigent, Y. and Van Kote, F. Radiochemical Determination of Beryllium-7 in a Fission Product Mixture Containing many Inorganic Salts Rapport CEA-R-3877 Prospero, J. M. and Carlson, T. N. Radon-222 in the North Atlantic Trade Winds: Its Relationship to Dust Transport from Africa Science, <u>167</u>, No. 3920, February 13, 1970 Radioactivite Ambiante Dans Les Pays De La Communaute Bulletin Trimestriel,  $N^{\circ}$  2/69 October 1969 Radioactive Contamination of Foodstuffs in the Countries of the Community in 1967 EUR 4383 d/f/i/n, December 1969 Radioactivity Survey Data in Japan

IV - 8

National Institute of Radiological Sciences, Chiba, Japan

NIRS RSD-22, February 1969

Rapport D'Activite September, October, November and December, 1969 SCPRI B.P. n<sup>0</sup>35, 78 Le Vesinet Annexe Au Rapport Mensuel Detail Des Resultats de Mesure, September, October, November and December 1969 SCPRI B.P. n<sup>0</sup>35, 78 Le Vesinet Rice, B.F., Schneider, G. and Weed, J. Serum Calcium and Magnesium Concentration during Early Labor and the Postpartum Period Obstetrics and Gynecology, Vol. 104, No. 8, Aug 15, 1969 Roy, J. K., and Roy, B.C. Food Sources, Dietary Habits and Nutrients Intake of the Nicobarese of Great Nicobar Indian J. of Medical Research, 57, No. 5, 1969 Sanders, C. L. Maintenance of Phagocytic Function Following <sup>239</sup>Pu0<sub>2</sub> Particle Administration Health Physics, 18, No. 1, January 1970 Sanders, C. L. and Bair, W. J. The Effect of DTPA and Calcium on the Translocation of Intraperitoneally Administered <sup>239</sup>Pu0<sub>2</sub> Particles Health Physics, 18, No. 2, February 1970 Schell, W. R. Investigation and Comparison of Radiogenic Argon, Tritium, and C-14 in Atmospheric Reservoirs N70-13966, LRL, Livermore Somayajulu, B.L.K. and Lal, D. Man-made Carbon-14 in Deep Pacific Waters: Transport by Biological Skeletal Material Science, 166, No. 3911, December 12, 1969

Sotobayashi, T., Suzuki, T. and Furusawa, A. Inter-hemispheric Transfer of Fresh Debris from French Nuclear Tests in 1968 Nature, 224, No. 5224, December 13, 1969 Stather, J. W. An Analysis of the Whole-body Retention of Caesium-137 in Rats of Various Ages Health Physics, <u>18</u>, No. 1, January 1970 Stein, F. The Shape of Atmospheric Particles in Pittsburgh Air Atmospheric Environment, July 1969 Sternglass, E. J. A Reply Bulletin of the Atomic Scientists Vol. XXV, No. 10, December 1969 Stevens, W., Stover, B. J., Bruenger, F. W. and Taylor, G.N. Some Observations on the Deposition of Americium-241 in the Thyroid Gland of The Beagle Radiation Research, Vol. 39, No. 1, 1969 Stout, G.E. Study of Rainout of Radioactivity in Illinois 8th Progress Report Contract No. AT(11-1)-1199, November 1969 COO-1199-18, sponsored by USAEC, DBM Strohal, P., Lulic, S. and Jelisavcic, O. The Loss of Cerium, Cobalt, Manganese, Protactium, Ruthenium and Zinc during Dry Ashing of Biological Material The Analyst, <u>94</u>, No. 1121, August 1969 Surveillance De La Radioactivite de L'Atmosphere et Des Eaux Commissariat a L'Energie Atomique 3<sup>0</sup>Trimestre 1969, FRANCE

Surveillance De La Radioactivite De La Chaine Alimentaire Commissariat a L'Energie Atomique 2° and 3° Trimestre 1969, FRANCE Tamplin, A. R. Fetal and Infant Mortality and the Environment Bulletin of the Atomic Scientists - Science & Public Affairs Volume XXV, No. 10, December 1969 Ter Haar, G., Dedolph, R.R., Holtzman, R.B. and Lucas, H.F. The Lead Uptake by Perennial Rye grass and Radishes from Air, Water and Soil Environmental Research, Vol. 2, No. 4, 1969 Thomas, J. W. and LeClare, P.C. A Study of the Two-filter Method for Radon-222 Health Physics, 18, No. 2, February 1970 Thomasson, W.N., Bolch, W.E., Gamble, J.F. Uptake and Translocation of 134Cs, 59Fe, 85Sr, and 185W by Banana Plants and a Coconut Plant Following Foliar Application Bio-Science, 9, No. 7, July 1969 Trotter, M. and Peterson, R. R. Weight of Bone During the Fetal Period Growth, Volume <u>33</u>, No. 2, 1969 Umweltradioaktivitat un Strahlenbelastung Jahresbericht 1968 Herausgegeben vom Bundesminister fur Wissenschaftliche Forschung Bonn, Germany, September 1, 1969 Vaughan, B. E. and Strand, J. A. Biological Implications of a Marine Release of  $^{90}$ Sr Health Physics, 18, No. 1, January 1970

Volchok, H. L., Feiner, M., Simpson, H.J., Broecker, W.S., Noshkin, V.E., Bowen, V.T. and Willis, E. Ocean Fallout - The Crater Lake Experiment J. Geophysical Research, 75, No. 6, pp 1084-1091, Feb. 20, 1970 Weaver, C. L., Harward, E. D. and Peterson, H. T. Tritium in the Environment from Nuclear Power Plants, Bureau of Radiological Health Public Health Reports, 84(4), pp 363-371, April 1969 Weaver, L. E. (Editor) Education for Peaceful Uses of Nuclear Explosives The University of Arizona Press, Tucson, Arizona Wolkonsky, P. M. Pulmonary Effects of Air Pollution Archives of Environmental Health, 19, No. 4, October 1969 Woodard, H. Q. A Comparison of the Chemistry of Blood from Bone and Peripheral Veins

Clinical Orthopaedics & Related Research

September-October 1969

IV - 12

s second se

154