$$
\begin{aligned}
& \text { II Pruberan itict } \\
& \text { To estinite the mucro of thill eta re the }
\end{aligned}
$$

wo wed for ch friml daft of th mowhell den de syn Heath Plan payment fo the the Trot Donative Pratiet

BEST COPY AVAILABLE
The
document is undated, but the presence of data from 1975 indicates that it must have been prepared in the period of 1977 to 1979 when we received it. It was noted that there are apparent inconsistencies anons several of the different tables. For example, Table III.. gives db ta for the Marshall Islands for the period 1955-1975 and Table III-5 gives data for the infant mortality rate for 1976. In Table III-1, the infant death rate per 9000 births for 1970 through 1975 is given as $28.3,33.5$, 25.4, 46.4, 21.1 and 37.0. However, Table III -5 indicates the infant mortality rate to be only 17.04. We used the data of Table III-i in the following estimates; because it is more complete and it provides a self-consistent set of data. However, in view of the discrepancies,
 makes little real difference in view of the uncertainties in the risk etinatin coefficients There is also a bias built into the data because of the inclusion of Eye and Majaro in the overall Marshall Island rates. This arises from the different death rates (particuiar?y

 obtained:

1. Rate of increase of the population A 3. $8 \% / y r$.
2. Infant death rats \AA, 3.2% per birth.
3. Overall death rate Ar 0.54\% per year.
4. Birth rate 4 4.2\% per year.

 isidor. Values for other initial populations may obtained by ratios of the results.

The total population at the end of 30 years is given by the compounding equation:
$P_{30}=550(1+0.038)^{30}=1684$
The number of births in 30 years are given by:

$$
B=0.042 \times 550 \int_{0}^{30}(1.038)^{x} d x
$$

where x is the time between 0 and 30 . This gives
$B=\frac{0.042 \times 550}{\ln 1.038}\left[1.038^{30}-1\right]=1277$

Similarly, the number of deaths in the 30 year period would be:
Deaths $=0.0054 \times 550 \int_{0}^{30}(1.038)^{x} d x$

Deaths $=\frac{0.0054 \times 550}{\ln 1.038}\left[1.038^{30}-1\right]=154$

One other needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initial dose rate of 1 rad/year is given by:
 of the distortion caused by the very high proportion of youns people who have a relatively low natural cancer incidence.

Woing the precedin calcutiken fo is proc.C.E. it 550, calculateso ure made for othen porzaditern tigra Fr a proulen 550 (/20mprexhi):

Deaths in 30 years $=164 \approx 160$
Births in 30 years $=1277 \approx 1300$

Frea poratila 140 (the mumben that neturnot Bitaic): Deaths in 30 years $\frac{164}{550}=\frac{x}{140}, x=\underline{\underline{41.7}} \approx 40$

Births in 30 years $\frac{1277}{550}=\frac{x}{140}, x=325 . \approx 300$

Fr a pepulete of 235:
Deaths' in 30 years, $\frac{164}{550}=\frac{x}{235}, x=70.07 \approx 70$
Births in 30 years, $\frac{1277}{550}=\frac{x}{235}, x=545.62 \approx 550$

For A Population of 350

Deaths in 30 years, $\frac{164}{550}=\frac{x}{350}, x=104.36 \approx 100$
Births in 30 years, $\frac{1277}{550}=\frac{x}{350}, x=812.63 \approx 800$

