409877

Table One

-

•

July 1982 Survey Summary

Desc	cription	Number of Samples	Analyses	Status
Whole I	Body Counts	329	Gamma scans for fission and activation products, and naturally occuring nuclides.	Results enclosed
Urine S	Samples	237	Gamma scans same as above, radiochemical analyses for Pu-239,240.	Results in approximately one year
Fecal :	Samples	14	Gamma scans and radio- chemical analyses same as above.	Results in approximately one year
Milk Sa	amples	3	Gamma scans, radiochemical and elemental analyses	Results enclosed

REPOSITORY	PN	NL		
COLLECTION .	Mars	hell	Jola	h
BOX No. 5	684			
FOLDER B	ini	1982		

DOCUMENT DOES NOT CONTAIN ECI

- - - - - - - - -

Reviewed by X Sunato Date 4/30/97

Table Tuo

Ę.

1

July 1982 Field Trip Results - Average Cs-137 and K39-41 Whole-Body Counting Data

					India Burden Mean ± 1 S.E.	
Population Grouping	Age Croup	Sex	Number Group	Cs-137 (Bq)	Cs-137 (µC1)	K39-41 (
						۰
				· · · · · · · · · · · · · · · · · · ·	2.8×10 ⁻¹ ±2.7×10 ⁻⁴	1.3×10 ^{±5}
	<u>2</u> 16	r	29		-12	0 610 ¹ +6
deraguoy	216	ţ.	18	7.8×10 ⁴ ±9.3×10 ⁴	2.1x10 ±2.5x10	DE NTXC.8
Rongelap		• ;	:	6 3410 ³⁺⁹ .6×10 ²	1.7×10 ⁻¹ ±2.6×10 ⁻⁴	7.5×10 ±3
Rongelap	c 1-11	E	71	[v	2 2210 -1+6.6×10-2	8.4×10 ¹ ±7
	11-15	(24)	2	8.1x10_±1./x10		2+101-1 >
	11 >	r	16	4.4×10 ² ±7.4×10	$1.2 \times 10 \pm 2.0 \times 10$	
Rongelap	1	ţa.	6	6.3×10 ³ ±1.1×10 ³	1.7×10 ⁻¹ ±3.1×10 ⁻	5.2×10 ±4
Rongelap		• :	;	, , , , 0 2 + 1 3 4 1 0 1	5.8×10 ⁻³ ±3.5×10 ⁻²	1.5×10 ^{±3}
Former Bikinian	216	z	-	1	2 5-10-3+4 0×10-4	1.2×10 ² ±3
cormar Bikinian	216	Ð.	42	1.3×10 ^{±1.9×10}		1 2.102+0
	11.15	z	6	5.6×10 ¹ ±6.7×10 ⁰	1.5×10 ±1.8×10	5. π.x.7. T
Former Bikinian	C7_77	:		6 7-101-0 40 4010	1.8x10 ⁻³ ±2.6x10 ⁻⁴	1.0×10 ^{±1}
Former Bikinian	11-15	b u	æ	0.1410 - 7.00	$\frac{1}{1}$	6.2×10 ¹ ±3
Former Bikinian	ć11	X	15	4.1×10 ±7.4×10	$-\frac{1}{2}$	5.5×10 ¹ ±4
sormer Bikinian	<11>	6 .	17	4.1×10 [±] ±6.3×10 ⁻		22 1 6~10 +1
	2 I K	Σ	11	1.6×10 [±] ±3.6×10 [±]	4.2x10 19.6x10	- CTANLL
Comparison Majuru	1	: '		1 1.10 ² +1 6x10 ¹	3.1x10 ⁻¹ ±4.4x10 ⁻⁴	1.0×10 [±] :
Comparison Majuro	2 16	fa.,	0		1.6×10 ⁻³ ±4.2×10 ⁻⁴	7.0×10 ¹ ±
Comparison Majuro	11-15	W	6	lote a lot a	1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	6.7×10 ¹ ±
Comparison Majuro	11-15	(a.,	11	4.8×10 ±9.3×10	$11 \times 10^{-3} \times 2.0 \times 10^{-4}$	5.2×10 ¹ ±
Comparison Majuro	<11	Σ	11	0^{1} , 1^{1} , 1^{1} , 0^{1}	$1 1 \times 10^{-3} \times 10^{-4}$	5.5×10 ¹ ±
Comparison Majuro	(11	[a.,	æ	4.1×10 ×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×	1 5 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2	±101×5.9
Former Rongelap at Jabor	10-68	15F	6	5.6×10 ±1.1XU	$3 \circ 10^{-2} + 1.9 \times 10^{-2}$	1.5×10 ² ±
Former Rongelap at Majuro	39-68	15F	en.	1.1XG-11 01XI.I		

Table One

٠.

July 1982 Survey Summary

Description	Number of Samples	Analyses	Status
Whole Body Counts	329	Gamma scans for fission and activation products, and naturally occuring nuclides.	Results enclosed
Urine Samples	237	Gamma scans same as above, radiochemical analyses for Pu-239,240.	Results in approximately one year
Fecal Samples	14	Gamma scans and radio- chemical analyses same as above.	Results in approximately one year
Milk Samples	3	Gamma scans, radiochemical and elemental analyses	Results enclosed

1

•

Acoll
Rongelap
at
Emitters
ton
Pho
From
Rate
Equivalent
Dose
Effective
Mean
of
Estimate

л -1 22 Кg	5.7×10 ⁻⁴ (57)	<5×10 ⁻⁶ (<0.5)	<5×10 ⁻⁶ (<0.5)	1.5×10 ⁻⁴ (15)			
<pre>> Acoll > Acoll Female Effective 1982 - 5v v (mre 1982 - 5v v (mre 1982 - 5v v</pre>	4.9x10 ⁻⁴ (49)	<5x10 ⁻⁶ (<0.5)	<5×10 ⁻⁶ (<0.5)	1.5×10 ⁻⁴ (15)			
Emitters at Rongelap	3.2×10 ⁻⁴ (32)	<5×10 ⁻⁶ (<0.5)	<5×10 ⁻⁶ (<0.5)	1.5×10 ⁻⁴ (15)			
a Three Rate From Photon I em y -1)	4.0×10 ⁻⁴ (40)	<5×10 ⁻⁶ (<0.5)	<5x10 ⁻⁶ (<0.5)	1.5×10 ⁻⁴ (15)			
Table Ive Dose Equivalent Male Effective Male Effective 1982 - Sv y - <u>fat</u> e	4.2x10 ⁻⁴ (42)	<5x10 ⁻⁶ (<0.5)	<5×10 ⁻⁶ (<0.5)	1.5x10 ⁻⁴ (15)			
bate of Mean Effect1	3.8×10 ⁻⁴ (38)	<5x10 ⁻⁶ (<0.5)	<5x10 ⁻⁶ (<0.5)	1.5x10 ⁻⁴ (15)			
Est L Man-Made Source of <u>Irradiacion</u>	Internal Cs-137	Internal Co-60	Internal 81-207	Net External Exposure	·	 	

Table Four

.

• .		5.0		ر ر ، ,		· . 			2 • • •	r î	•					
	2 		• } • J •	1.20		2.21	: 				·					
	Ratio Breast Milk to Body Burden l	2.4×10 ⁻⁶	2.5×10 ⁻⁶	5.2×10 ⁻⁶	3.5×10 ⁻⁶	3.8×10 ⁻⁶	5.0×10 ⁻⁶	3.2×10 ⁻⁶	4.0×10 ⁻⁶	3.5×10 ⁻⁶	1.7×10 ⁻⁶	ı	ł		ı	
ips	137 _{Cs} Body Burden	0.251	0.17	0.23	0.13	0.077	0.092	0.084	960.0	0.072	0.075	0.010	0.0042	0.0015	No data	
1982 Field Tr	Result ri/ml	6.2×10 ⁻⁷	4.3×10 ⁻⁷	1.2×10 ⁻⁶	4.6x10 ⁻⁶	2.9×10 ⁻⁷	4.6×10 ⁻⁷	2.7×10 ⁻⁷	3.8×10 ⁻⁷	2.5×10 ⁻⁷	1.3×10 ⁻⁷	× MDL	YDL >	JUK >	70K >	
ts From 1981 &	2nd 137 Result	5.4×10 ⁻⁷ ±192	4.1×10 ⁻⁷ ±212	1.1×10 ⁻⁶ ±112	4.6×10 ⁻⁷ ±227	2.7×10 ⁻⁷ ±28 X	4.6×10 ⁻⁷ ±13 X	2.4×10 ⁻⁷ ±23X	3.3×10 ⁻⁷ ±23 X	2.5×10 ⁻⁷ ±412	< MDL	4 MDL	> MDL	ADL	1 0K >	
lk ¹³⁷ Cs Resul	lst 137Cs Result	6.9×10 ⁻⁷ ±137	4.4×10 ⁻⁷ ±192	1.2×10 ⁻⁶ ±10 X	4.55×10 ⁻⁷ ±182	3.1×10 ⁻⁷ ±362	> MDL	2.9×10 ⁻⁷ ±25 X	4.2×10 ⁻⁷ ±18%	YDK >	1.3×10 ⁻⁷ ±56 z	< HDL	< HDL >	<pre>> HDL</pre>	YDR >	
Breast M1	Collection	7/81	7/81	1/81	7/81	18/1	1/81	1/81	18/1	1/81	1/81	7/81	7/82	7/82	7/92	
	Volume	10	10	10	10	10	ŝ	10	10	10	10	\$	15	٢	9.5	6×10 -6 μC1 J.7×10 ⁴ 34
	Sample ID	5044	116	92	\$057	2316	5035	\$025	1044	3037	3532	5034	6052	¥219	None	101 = 2. 1 _UI = 2.

.

·

Table Five

.

Estimate of Total Annual Committed Effective Dose

Equivalent At Rongelap Atoll During 1982

erage A Rstimate	December 31, 1982 Bq (µC1)	$1.1x10^{4} (3.0x10^{-1})$ $8.9x10^{1} (2.4x10^{-3})$ $6.7x10^{2} (1.8x10^{-2})$ $2.7x10^{-2} (7.3x10^{-7})$ $<7.4x10^{1} (<2.0x10^{-3})$ ID $1D$
Adult Ave Body Rurder	January 1, 1982 Bq (µC1)	7.4x10 ³ (2.0x10 ⁻¹) 9.4x10 ¹ (2.6x10 ⁻³) 8.6x10 ² (2.3x10 ⁻²) 4.2x10 ⁻² (1.1x10 ⁻⁶) $<7.4x10^{1} (<2.0x10^{-3})$ ID -
lyerage	Committed Effective Dose Equivalent Sv (mrem)	$4.5 \times 10^{-4} (4.5 \times 10^{1})$ $5.6 \times 10^{-6} (5.6 \times 10^{-3})$ $2.2 \times 10^{-7} (2.2 \times 10^{-2})$ $2.7 \times 10^{-13} (2.7 \times 10^{-8})$ $<5.10^{-6} (<0.5)$ ID $1.5 \times 10^{-4} (15)$ $6.1 \times 10^{-4} (61)$
Adult	Activity Intake During 1982 Bq (µCi)	3.3x10 ⁴ (8.9x10 ⁻¹) 1.6x10 ² (4.2x10 ⁻³) 1.4x10 ³ (3.8x10 ⁻²) 3.8x10 ⁻⁵ (1.0x10 ⁻⁹) 1D 240 ID 240 ID 25ure -
	Man-Made Source of <u>Radlation</u>	Internal Cs-137 Internal Sr-90 Internal Fe-55 Internal Co-60 Internal B1-207 Internal Pu 239,2 Net External Expc Total Man-Made

ID = Insufficient Data

ì

Table Six

Date	Time	System No.	Activity µCi±lσ
7-04-82	1632	1	$9.9 \pm 1.7 \times 10^{-2}$
7-05-82	0838	1	$9.8 \pm 1.6 \times 10^{-2}$
7-07-82	1200	1	$10 \pm 1.6 \times 10^{-2}$
7-07-82	1715	, 1	$8.8\pm6.6\times10^{-3}$
7-08-82	0830	1	$9.5 \pm 1.6 \times 10^{-2}$
7-08-82	1302	1	$10 \pm 1.6 \times 10^{-2}$
7-11-82	0845	1	$9.1 \pm 1.5 \times 10^{-2}$
7-11-82	2030	1.	$9.8 \pm 1.5 \times 10^{-2}$
7-12-82	2030	1	$9.7 \pm 1.5 \times 10^{-2}$
7-13-82	1104	1	$9.4 \pm 1.5 \times 10^{-2}$
7-14-82	0829	1	$8.7 \pm 1.5 \times 10^{-2}$
7-16-82	0810	1	$9.5 \pm 1.5 \times 10^{-2}$
7-04-82	1500	2	$10 \pm 6.3 \times 10^{-3}$
7-05-82	1000	2	$10 \pm 6.0 \times 10^{-3}$
7-07-82	0851	2	$8.2 \pm 1.4 \times 10^{-2}$
7-07-82	1725	2	$8.4\pm6.4\times10^{-3}$
7-08-82	0759	2	$9.3 \pm 1.5 \times 10^{-2}$
7-08-82	1020	2	$9.1 \pm 1.5 \times 10^{-2}$
7-08-82	1305	2	$9.1 \pm 1.5 \times 10^{-2}$
7-08-82	1440	2	$9.2 \pm 1.5 \times 10^{-2}$
7-11-82	0855	2	$9.1 \pm 1.5 \times 10^{-2}$
7-11-82	2000	2	$8.3 \pm 1.4 \times 10^{-2}$
7-12-82	2000	2	8.6±1.5x10
7-13-82	1010	2 .	$8.8 \pm 1.5 \times 10^{-2}$
7-14-82	0830	2	$8.8 \pm 2.1 \times 10^{-2}$
7-15-82	0845	2	$8.9 \pm 1.5 \times 10^{-2}$
7-16-82	0815	2	$8.7 \pm 1.5 \times 10^{-2}$

July 1982 Quality Control Point Source Counting

Mean \pm Mean σ

Standard Error

.

 $9.2 \pm 1.4 \times 10^{-2}$

•

11%

Table Seven

Name	Date	System No.	Ratio <u>lst¹³⁷Cs/2nd ¹³⁷Cs</u>	Ratio lst K/2nd K
·	7-5-82	1	MDL	1.1
M.T. Ryan	7-5-82	2	MDL	
M.I. Kyan	1 9 00			
S.V. Musolino	7-5-82	1	MDL	1.04
S.V. Musolino	7-5-82	1		
	_	-	MDT	1 01
S.V. Musolino	7-5-82	1	MDL	1.01
S.V. Musolino	7-5-82	2		
	7 7 97	1	MDL	1.06
E.T. Lessard	7 15 92	2.		
E.T. Lessard	/-1)-02	L		
A Lowiticus	7-11-82	1	0.907	1.02
A. Leviticus	7-11-82	1		
				0.00
J. Harper	7-12-82	1	MDL	0.99
J. Harper	7-13-82	1		
19 - A		•) (D)	1.03
M.T. Ryan	7-5-82	1	MDL	2105
M.T. Ryan	7-12-82	T		
	7-11-82	2	· 1. 1	0.94
E. Jibas	7.11.82	2		
E. JIDAS	/-11-02	-	_	
Winnie	7-7-2	1	1.0	0.86
Winnie	7-7-82	2		
W THULF C				
Randy	7-7-82	1	1.0	0,987
Randy	7-7-82	2		
		·	1.0	1 0
Mean			T •0	T.0
m. 1 1 m bard			7.9%	6.7%
Standard Deviation				

July 1982 Quality Control Replicate Counting

MDL = Minimum Detection Limit

1

•

;

Graph One

JANUARY 1982 BIOASSAY FIELD TRIP TO ENEWETAK ATOLL

From January 9, 1982 to January 16, 1982, members from the Marshall Islands Ragiological Safety Program at Brookhaven National Laboratory conducted the third annual bioassay mission to Enewetak Atoll. The purpose of this mission was to define current body burdens of ¹³⁷Cs, ⁶⁰Co, ²⁰⁷Bi, ⁹⁰Sr and ²³⁹Pu in the population that currently resides on Enewetak Atoll. During this time, 399 Marshallese were whole body counted; 24-hour urine samples were collected from 310 individuals and consecutive daily urine and fecal samples were obtained from 10 adult males. Participation in the whole-body counting urine and fecal sampling programs was voluntary and restricted to individuals five years of age and older. Greater than 95% of the population participated in the whole body counting, program and approximately 75% of the population provided the requested urine and fecal samples. This report summarizes the results to date. Data obtained from the analysis of urine and fecal samples will be reported under separate cover.

Table 1 is a summary of the population average body burdens for 137 Cs, 60 Co, 207 Bi and potassium. The reported error represents the one sigma standard deviation associated with the mean for each population subgroup. The mean potassium body burden for the adult males has returned to the level determined in the baseline study of 1980. This is important since it may reflect a change in diet or living pattern. All other mean potassium body burden since 1980.

The mean adult male 137Cs body burden has risen to the level observed at Ujelang Atoll in 1980 and represents a factor of two change in the mean body burden during the past year. Individual results have risen to a high of 0.14 µCi in January 1982 in contrast to 0.026 µCi in 1981. This change in the mean adult male 137Cs body burden is associated with consumption of food grown at Enjebi Island. The 137Cs body burden in all other population subgroups has remained the same or declined slightly.

The nuclides 207_{Bi} and 60_{Co} were detected in members of the sample population at levels that are at or near the minimum detection limit (MDL) for the radionuclide (0.6 nCi). Results were reported even if less than 0.6 nCi provided that the one sigma standard deviation due to counting statistics did not exceed the result. This reporting technique will tend to provide less precise information on an individual but will better describe population trends. The nuclide 60_{Co} has been detected in members of each population subgroup at a constant level in prior years. Because this level is at or near the system MDL it is a conservative estimate of the mean body burden of the population.

The nuclide 207Bi has been detected in the Enewetak people in 1981 and again in 1982 at levels that substantially exceed the system MDL. In 1981, one individual was determined to have a 207Bi body burden of 12 nCi. This year the highest value was 6.3 nCi. In the adult male population 15 individuals had body burdens in excess of 1 nCi while in adult females 6 individuals had body burdens exceeding 1 nCi. These data indicate that 207Bi is being incorporated into the diet of the population in increasingly larger quantities each year.

Discussions with Bill Robison and Vic Noshkin on January 22, 1982 indicate that the 207Bi and possibly 60Co result are reasonable estimates of the population mean body burden. According to Dr. Noshkin, activity concentrations in Enewetak fish for 207_{Bi} , 60_{Co} and 137_{Cs} are 1 pCi/g, 1 pCi/g and 0.8 pCi/g respectively. Using an average residence interval of two years, these activity concentrations, the Robison diet (UCRL 53066 p 40) and the retention functions for 207B1 (NUREG/CR-0150-V-2) and 60Co(ORNL/NUREG/TM-190), the predicted body burden for ²⁰⁷Bi falls into the range of 0.24-0.70 nCi and the predicted body burden for ⁶⁰Co falls into the range of 3.5 - 10.4 nCi. These estimates are highly dependent on the retention function and the assumed dietary patterns. Further discussions with Drs. Robison and Noshkin revealed that the presence of 207Bi and 60Co may also be enhanced for the Marshallese if they eat the entire fish since ^{207}Bi and ⁶⁰Co are present at higher concentrations in the fish intestinal content and liver. Drs. Noskin and Robison also stated that there were detectable quantities of transuranic elements in the non-edible parts of the fish and that LLNL dose projections do not assume that the entire fish is ingested. This dietary question will be investigated on the next field trip to Enewetak Atoll.

The rise in the adult male ¹³⁷Cs body burdens was investigated while the field team was at Enewetak Atoll. Comparison of the first 20 adult male results with past body-burden histories indicated that some individuals were exceeding prior levels. Individuals whose current ¹³⁷Cs body burden exceeded 75% of the maximum ¹³⁷Cs body burden observed in their population subgroup during 1981 were interviewed privately following the whole-body count in an effort to determine recent changes in living pattern or dietary habits. The information obtained from these interviews is presented in Table 2. Table 3 lists all individuals whose 137Cs body burden exceeded 75% of the maximum observed 137Cs body burden in 1981.

From the interviews it was determined that individuals traveled to Enjebi Island usually once per month, ate coconut meat and drank coconut milk from the LLNL garden. The trips, usually two to three days in length, were made to collect birds and eggs and were made by members of the population with an age distribution as listed in Table 4. Food from the LLNL garden was consumed during the visit and occasionally coconuts were gathered and brought back to the southern islands. While the absolute quantities of food consumed on each trip, as listed in Table 3, are subject to substantial variation, these estimates may be helpful in determining reasonable upper and lower limits of consumption for coconut meat and milk.

The Marshallese were advised in the closeout meeting that a trip to Enjebi to collect birds and eggs was an acceptable practice but consumption of food products grown in the LLNL garden would increase their 137 Cs body burden. They were further informed that this exposure to radiation did not present a health problem but the loss of data would hamper the LLNL efforts to study the environment of the northern islands. Since this would affect future use of the northern islands, the Marshallese promised to refrain from eating LLNL garden food products.

Information provided during the private interviews led to the collection of three coconut samples from the LLNL garden. Gamma spectroscopy results conducted on the entire coconut (husk, shell, meat and fluid) are reported in Table 5. These coconuts have been shipped to Bill Robison for detailed analysis. If these ¹³⁷Cs activity concentrations are representative of future coconut activity concentrations, then one could expect to observe ¹³⁷Cs body burden of 4-7 μ Ci for individuals ingesting the Robison diet and residing on Enjebi Island.

Table 6 presents quality assurance replicate results. Identification numbers with an asterisk indicate that the replicate count was not performed on the same whole-body counting system as the first count. The means and standard deviations reported at the bottom of the page represent results for the total program and results grouped by the method of replicate counting. The average capability to reproduce a body burden with either whole-body counting system is \pm 7%. The 2 sigma counting error associated with most results in Table 6 is \pm 5-10%. Replicate counting results from the same system are somewhat closer than when two different systems are used. Most of the error associated with these results is due to re-positioning of the individual.

Table 7 presents results for all individuals who have ever participated in the Enewetak-Ujelang whole-body counting program. The data are ordered alphabetically by first name and grouped by age and sex. The age reported in this table is the age of the time of the last whole-body count. A person has been included in a specific subgroup based on the age as of January 1982.

In summary, the most important finding to date was the increase in 137 Cs body burdens for members of the adult male population subgroup. The coconut samples and the interviews will provide additional information to further define dietary habits and assist in predicting 137 Cs body burdens for future field trips.

	,						
				ð9- <u>-</u>			
	۴ ۲	·					
•.							
							4
	.						
				, <u>eu</u>			
_							
	y						
		¥					
POP	ZIS	71 55	44	69 48 53		16	
	<u>ج</u> ا	0 1 5	0 0				
	YEA	198 198 198	198 198	198 198 198	198 198 198 198	198 198 198 198	
	al	ak ak	ak g	ak ak	e ak. ek.	is ak	
	SLAN	ewet ewet ptan	evet elan	lewet lewet Iptan	elan lewet lewet lptan	newet newet nptan	
	ΗI	с Г Ла	En Uj	En En En			
						S	
					le	male	
	TION	U U		ale	it Ma	Lt Fe	
	PULA	Mal		Fem	scen	scen	
	PO	ldult		ldu1t	ldole	Adole	
		4		e 4	4	-4	

_= ...

TABLE #1, Continued

$52 \pm 0.16 \qquad \qquad 44 \qquad 1.5 \pm 1.3 \qquad 44 \qquad 46 \pm 9.8 \\ \qquad \qquad \qquad 7 \qquad 2.6 \pm 0.88 \qquad 7 \qquad 46 \pm 6.7 \\ \qquad \qquad 41 \qquad 5.6 \pm 2.1 \qquad 41 \qquad 47 \pm 9.6 \\ \qquad \qquad 41 \qquad 5.6 \pm 2.1 \qquad 41 \qquad 47 \pm 9.6 \\ 47 \pm 0.01 \qquad 16 \qquad 0.42 \pm 0.084 \qquad 53 \qquad 1.1 \pm 0.41 \qquad 53 \qquad 48 \pm 9.1 \\ 47 \pm 0.25 \qquad \qquad \qquad 51 \qquad 1.4 \pm 0.93 \qquad 51 \qquad 43 \pm 7.9 \\ \qquad \qquad 39 \qquad 5.2 \pm 1.9 \qquad 39 \qquad 45 \pm 8.4 \\ 45 \pm 8.4 \\ \qquad \qquad 39 \qquad 5.2 \pm 1.9 \qquad 39 \qquad 45 \pm 8.4 \\ \qquad \qquad \qquad$	<u>ISLAN</u> Enewet	<u>D YEAR S</u> ak 1982	8 8	$\frac{60}{(0, 100)}$ (nc1)	<u>SIZE</u> 11	$\frac{207_{B1} (nC1)}{0.44 \pm 0.13}$	39 39	$\frac{137_{G_8} (nC1)}{1.1 \pm 0.49} \frac{SIZE}{39}$	POTASSI((g) 48 ± 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Enewetak 1981 6 0.5	6 0.5	0	52 ± 0.16	}		44	1.5 ± 1.3 44	46 + 9.8
$40 \pm 0.19 \qquad \qquad 41 \qquad 5.6 \pm 2.1 \qquad 41 \qquad 47 \pm 9.6 = 4.1 \\ 42 \pm 0.01 \qquad 16 \qquad 0.42 \pm 0.084 \qquad 53 \qquad 1.1 \pm 0.41 \qquad 53 \qquad 48 \pm 9.1 \\ 47 \pm 0.25 \qquad \qquad 51 \qquad 1.4 \pm 0.93 \qquad 51 \qquad 43 \pm 7.9 \\ \qquad \qquad 7 \qquad 2.6 \pm 1.4 \qquad 7 \qquad 41 \pm 8.1 \\ 47 \pm 0.20 \qquad \qquad 39 \qquad 5.2 \pm 1.9 \qquad 39 \qquad 45 \pm 8.4 \\ \end{array}$	Japtan 1980))	~			ł		٢	2.6 ± 0.88 7	46 ± 6.7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ujelang 1980 $j \stackrel{4}{\leftarrow} j^0$.	4 } 0.	° •	40 - 0.19	1		17	5.6±2.1 41	47 ± 9.6
$47 \pm 0.25 \qquad \qquad 51 \qquad 1.4 \pm 0.93 51 \qquad 43 \pm 7.9 \\ \qquad \qquad 7 \qquad 2.6 \pm 1.4 \qquad 7 \qquad 41 \pm 8.1 \\ 47 \pm 0.20 \qquad \qquad 39 \qquad 5.2 \pm 1.9 \qquad 39 \qquad 45 \pm 8.4 \\ \qquad \qquad$	Enewetak 1982 5 0	5	0	.42 ± 0.01	16	0.42 ± 0.084	53	$1.1 \pm 0.41 53$	48 ± 9.1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Enewetak 1981 8 0.	8	Ö	.47 ± 0.25	l F		51	$1.4 \pm 0.93 51$	43 ± 7.9
47 ± 0.2039 5.2 ± 1.9 39 45 ± 8.4	Japtan 1980				}	و و و و و و و و	٢	2.6 ± 1.4 7	41 ± 8.1
	Ujelang 1980 } ³ 0	о Ю	Ö	.47 ± 0.20]		39 3	$5.2 \pm 1.9 39$	45 ± 8.4

-

۰,

•

<u>ID #</u>	1982 ¹³⁷ Cs BODY BURDEN (nCi)	AUG	TRIPS SEPT	S TO EL OCT	NOV	DEC	NUMBER OF INGESTED I <u>MEAT</u>	COCONUTS PER TRIP <u>MILK</u>	OTHER FOOD INGESTED
1035	20	x	-	-		-	None	2	None
1035	20	-		-	-	х	None	5	None
1173	23	-	-			х	None	7	None -
2196	16	-	-	-	X	-	Unknown	Unknown	None
2064	27	-	-	-	-	x	5	5	None
2080	27	-	-	-	-	х	4	4	None
1026	19	-	_	-	х		1	1	None
	18	-	-	-	-	х	4	4	None
1348	76	-	-	-	х		10 7	10	None
1340	26	-	-	-	-	х	None	None	Eggs & Turn
1056	120	-	-	х	х	х	3	3	None
2152	136	-	-	-	X	х	1	1	None
1094	106	-	-	-	-	x	10	10	None
1192	73	-	x	х	x	х	Unknown	Unknown	None
2143	46	x	-	-	-		1	0	None
1226	43	(7 trips pr	ior to	Oct)	x	x	Unknown	Unknown	None
2147	30		Dat	es Unk	nown		1	3	None
1045	34	-	-	х	-	-	5	0	None
1045	34	-	_	-	х	-	0	5	None
1348	76	-	-	-	-	х	10	10	None

TABLE #2

DIETARY AND TRAVEL INFORMATION OBTAINED FROM PRIVATE INTERVIEWS

.

- · · · ·

.

4

<u>ID #</u>	<u>SEX</u>	AGE	1982 ¹³⁷ Cs BODY BURDEN nCi	<u>ID #</u>	SEX	AGE	1982 ¹³⁷ Cs BODY BURDEN nCi
2041	м	29	40	1173	м	41	23
1156	м	37	26	2182	F	22	25
2227	м	27	23	2064	М	47	28
2079	М	28	90	1097	М	23	23
1007	М	41	25	1220	М	31	31
1059	М	29	39	2080	М	21	27
1308	м	23	83	1239	М	26	88
1112	М	33	73	1229	М	. 49	24
2074	м	38	44	1181	М	29	45
2097	м	25	42	2263	M	21	31
2071	М	20	32	2050	м	46	38
1054	М	33	35	1340	F	20	26
1004	м	46	37	1047	М	56	20
1078	Mz	26	33	1348	М	21	76
2117	М	35	22	1035	M	27	20
1056	М	22	120				
2152	М	29	136				
2141	М	28	24				
1094	M	34	106				
2143	М	26	46				
1266	м	26	43				
2147	м	31	30				
1045	м	28	34				

			TABL	.E #3			
LIST	OF	INDIVIDUALS	WHOSE	137 _{Cs}	BODY	BURDEN	EXCEEDED
		75%	OF 19	81 RES	JLTS		

<u>TABLE # 4</u>

AGE DISTRIBUTION OF POPULATION TRAVELING TO ENJEBI

CR CROUP	NUMBER OF INDIVIDUALS
AGE GROUP	
20-29	23
30-39	. 8
40-49	6
Over 50	1

TAE	LE	#5

137	TN	COCONUTS	COLLECTED	FROM	LLNL	GARDEN
US.	TN	COCOMOIS	COURTOIN			

SAMPLE #	MASS (g)	137 _{Cs ACTIVITY}	$\frac{137}{(\mu Ci/g)}$
1	472	0.078	1.6×10^{-4}
2	841	0.054	6.4×10^{-5}
3	1193	0.12	1.0×10^{-4}
Ave	835	0.083	1.1×10^{-4}

4

•,

ï

1.

•

TABLE #6

۰.

QUALITY ASSURRANCE REPLICATE RESULTS

			RATIO	RATIO
	¹³⁷ Cs	POTASSIUM	137 Cs/2nd $137 Cs$	lst K/2nd K
<u>ID #</u>	(nCi)	<u>(g)</u>		
1302	3.9	100	1.1	0.95
	3.5	108		
2206*	14	175	1.0	0.89
	14	197		
1234*	7.7	186	1.04	0.99
1254	7.4	187	•	
2173	2.0	58		
2175	1.9	52	1.05	1.1
2153	5.6	98	0.90	0.91
2133	6.2	108		
2185*	1.3	41	0.72	0.75
2105	1.8	55		
1093*	8.1	147	0.89	0.84
	, 9.1	175		
2136	3.9	80	0.85	1.05
	4.6	76		
1173*	26	152	1.13	0.96
1173	23	159		
1035*	22	167	1.1	0.86
1033	20	194		
, 2235*	4.5	104	4 1.25	0.94
2235	3.6	111		
<u> </u>	10	117	1.0	0.91
<i>L L L L</i> ···	10	128		
2050 *	38	187	1.27	1.03
2030	30	181		

<u>ID #</u>	137 _{Cs} (nCi)	POTASSIUM (g)	RATIO 137 Cs/2nd 137 Cs	RATIO <u>1st K/2nd K</u> 0.99
2228*	25 23	195 196	1.09	
2046*	18 17	170 172	1.06	0.99
1070*	11	190 187	1.0	1.02
1303	4.8	109	1.0	1.08
1079	4.8 3.6	101	1.03	1.02
1134	3.5 14	100 176	1.17	0.99
1142	12 2.0	177 119	0.83	1.02
1172	2.4	117		
		a		
 N			20	0.96
x σ			4.0 0.14 0.03	0.09

_

PLICATE COUNTED ON SAME SYSTEM

STANDARD ERROR

. **.**

REPLICATE COUNTED ON SAME SISTEM		0
	8	8
N -	0.99	1.01
X	0.12	0.07
σ	0.05	0.03
STANDARD ERROR	0.05	
REPLICATE COUNTED ON DIFFERENT SYSTEM		
N	12	12
л 7	1.05	0.93
X	0.15	0.08
σ	0.04	0.03
STANDARD ERROR	0.04	