were calculated. Included are estimates based on BEIR-I which we used since BEIR-III had not yet been accepted by the U.S. Government. In fact at the time we wrote the Bikini book only a type set copy of BEIRIII was available, which was not identical to the version eventually published. We used this type set version to calculate estimates based on BEIR-III for comparison purposes. This also is enclosed.

Because of your question about the origin of the values for the dose to the highest individual I've included a table in the appendix of actual dose data for individuals.

Also included is a copy of the Trust Territory of the Pacific Islands, Five Year Comprehensive Health Plan, dated February 1979. As I mentioned to you on the phone this was our only source of population data or the Mi:shal?ese people. The enclosure is all of the report that D^{n}. Wachholz received from Mr. Ted Mitchell, a lawyer who was with the Micronesian Legal Service and who represented the Enewetak people. You'll note that it appears incomplete. Also, there is a part which is labeled Chapter Four, VI Demography. I don't know whether this is a part of the Marshall Islands Five Year Plan or whether it is from another report. The data in this Chapter Four is not quite in agreement with the data in the Five Year Plan. For example, in Table IV-6, page 63 the annual growth rate for the Marshallese is given as 4.4%. From the data in Table III-l of the Five Year Plan, the annual growth rate seemed to be less than 4%; we used 3.8%.

Please call if you have any questions.

等等 A Battelle

Letter to Dr. Kohn
February 8, 1982
Page 2

Sincerety yours, gicl
W. J. Bair, Ph.D.

Manager
Environment, Health and Safety Research Program

WJB: 1m
Enclosures as stated
CC: J. W. Healy
W. L. Robison
B. W. Wachholz

EPIDEMIOLOGY RESOURCES, INC.

January 26, 1982, $\because \because \because=-\infty$
1203 Shattuck Avenue
Berkeley CA 94709
415-526-0141

Dr. W. J. Bair
Environment, Health and Safety Research Program
Batelle Pacific Northwest Laboratories
Richland, WA 99352
Dear Dr. Bair:
In your letter of December 29 th , you were good enough to say that you would send us a copy of a summary of the risk calculations, on the Bikini problem,

I wonder if that summary has been completed, and if so, could it be sent to us now. It would be very helpful, since we are being pressed to comment on them.
very, sincerely yours,
Henry I. Kohn M.D.

I. ASSUMPTIONS

Estimates of cancer and birth defect risks for the Bikini populations were based on a number of assumptions. Some of these assumptions resulted from consultation with other scientists including members of the BEIR committees.

1. Risk coefficients from BEIR-I were used because BEIR-III had not been accepted by any U.S. government agency. We elected to use the values as given in BEIR-I rather than the revised values based on increased age of the population shown in Table $V-4$ of BEIR-III.
2. For estimates of cancer risk both the relative risk coefficient and the absolute risk coefficient were used to give a range of estimated risk. The absolute risk coefficient gives a lower value, is less variable with the population and is not dependent upon the spontaneous cancer incidence, which is not known for the Bikini population. The relative risk coefficient gives a high value, but since it is based on the spontaneous cancer incidences, which is unknown for the Bikini population, it is probably less reliable than the estimates calculated from the absolute risk coefficients.
3. For estimating increased cancer incidences, the bone marrow dose was used because it was slightly higher than the whole body dose. This probably introduced a small element of conservation.
4. For estimating birth defects neither BEIR-I or BEIR-III is very clear about what is meant by parental dose, thus it is not clear whether birth defects should be based on the dose to one parent or both parents. In the latter case, the 30 -year whole body dose would be doubled. We assumed the BEIR-I risk of 0.2% rem was based on both parents being irradiated. Also because we believed the risk coefficient from BEIR-I

II. POPULATION ESTIMATES

To estimate the number of births, deaths and the magnitude of the Bikini population after 30 years, information was used from the final draft of the Marshall Islands Five Year Health Plan prepared by the Trust Territories' Department of Health Services' Office of Health Planning and the Resources Department. The document is undated, but the presence of data from 1976 indicates that it must have been prepared in the period of 1977 to 1979 when we received it. It was noted that there are apparent inconsistencies among several of the different tables. For example, Table III-l gives data for the Marshall Islands for the period 1955-1975 and Table III-5 gives data for the infant mortality rate for 1976. In Table III-1, the infant death rate per 1000 births for 1970 through 1975 is given as $28.3,33.6,25.4,46.4,21.1$ and 37.0. However, Table III-5 indicates the infant mortality rate to be only 17.04. We used the data of Table III-1 in the following estimates; because it is more complete and it provides a self-consistent set of data. However, in view of the discrepancies, the results can only be considered as approximations. This probably makes little real difference in view of the uncertainties in the risk coefficients that were used. There is also a bias built into the data because of the inclusion of Ebye and Majuro in the overall Marshall Island rates. This arises from the different death rates (particularly infants) at these two locations. In many respects the population of Ebye and Majuro are quite dissimilar from the Bikini population because they have the advantages and disadvantages of a more technical environment.

For the estimates the last 5 or 6 year average of the data were used because they are probably the most representative of current conditions. From this, the following were obtained:

1. Rate of increase of the population has been about $3.8 \% /$ year .
2. Infant death rate is about 3.2% per birth.
3. Overall death rate is 0.54% per year.
4. Birth rate is 4.2% per year.
summing. This gave 8949 rads for the total population including the original 550. The total dose received by the original 550 , assuming that all live for the 30 years, is

$$
P^{\prime}=\frac{550}{\lambda}\left(1-e^{-\lambda t}\right)=11,902 \mathrm{rads}
$$

For those born after the return, the population would be the difference between the total population in 30 years, the number of deaths and the original 550 people or 1134. Thus, the per capita dose for this group is $8949 / 1134=7.9$ rads. For the original 550 , the per capita dose is $11,902 / 550=22$ rads. The ratio of these two to give an estimate of the fraction of the full 30 year dose received by the children is 0.36 .

The assumption of no deaths in the original 550 returning was made for simplicity and the lack of good death rate data.

We also compared the age characteristics of the Marshallese from Table IV-3 and the U.S. population in 1970. This comparison is given in the attached curve. The slopes are similar above age 35 but the magnitudes are distorted by the high birth rate in the Marshall Islands. However, in terms of the relative risk the similar slopes suggest that if the natural cancer rates in the two populations are similar, the relative risk for people above 35 in both populations would be similar because most of the cancer occurs at ages from about 40 and above. However, the magnitude of the relative risk in the U.S. used for the Marshallese will be high by a factor of somewhere around 2-3 because of the distortion caused by the very high proportion of young people who have a relatively low natural cancer incidence.

Using the preceding calculations for a population of 550 , calculations were made for other population sizes. For a population of 550 (from preceding):

Deaths in 30 years $=164 \approx 160$
Births in 30 years $=1277 \approx 1300$

For a population of 140 (the number that returned to Bikini):

A population of 550 was assumed for the one that might move back permanently to Bikini Atoll. Values for other initial populations were obtained by ratios of the results.

The total population at the end of 30 years is given by the compounding equation:

$$
P_{30}=550(1+0.038)^{30}=1684
$$

The number of births in 30 years are given by:

$$
B=0.042 \times 550 \int_{0}^{30}(1.038)^{x} d x
$$

where x is the time between 0 and 30 . This gives

$$
\left.B=\frac{0.042 \times 550}{\ln } \frac{0.038}{1.038} 30-1\right]=1277
$$

Similarly, the number of deaths in the 30 year period would be:

$$
\begin{aligned}
& \text { Deaths }=0.0054 \times 550 \int_{0}^{30}(1.038)^{x} \mathrm{dx} \\
& \text { Deaths }=\frac{0.0054 \times 550}{\ln 1.038}\left[1.038^{30}-1\right]=164
\end{aligned}
$$

One other datum needed is the reduction in 30 year dose to those born after the return because of the decrease in radiation levels and the smaller amount of time in the 30 year period that is spent on the island. For this, the total population dose for those born after returning assuming an initial dose rate of 1 rad/year is given by:

$$
P=550 D_{1} \int_{0}^{30} e^{-\lambda x}\left(1.038^{x}\right) d x
$$

λ is the half-life of decrease of the radiation dose, taken here as 30 years.

Because this integral cannot be solved analytical, an approximate solution was obtained by calculating this function for each of 30 years and

Deaths in 30 years $\frac{164}{550}=\frac{x}{140}, x=41.7 \approx 40$
Births in 30 years $\frac{1277}{550}=\frac{x}{140}, x=325 . \approx 300$

For a population of 2:35:
Deaths in 30 years $\frac{164}{550}=\frac{x}{235}, x=70.07 \approx 70$
Births in 30 years $\frac{1277}{550}=\frac{x}{235}, x=545.62 \approx 550$

For a population of 350 :
Deaths in 30 years $\frac{164}{550}=\frac{x}{350}, x=104.36 \approx 100$
Births in 30 years $\frac{1277}{550}=\frac{x}{350}, x=812.63 \approx 800$

III. RISK COEFFICIENTS

At the time the Bikini book was prepared no agency in the U.S. government had accepted the risk coefficients in BEIR-III. Thus we were constrained to use risk coefficients from BEIR-I. While not included in the printed book, risk estimates based on BEIR-III were calculated for comparison purposes. The following gives the origin of the risk coefficients used.
A. BEIR-I

1. Cancer (Tables 3-3 and 3-4)

Cancer deaths/year in U.S.
from 0.1 rem/year $($ pop $=197,863,000)$

Derived
Cancer deaths/ 10^{6} person rem

From the above the minimum estimate of cancer risk would be given by a risk coefficient of $87 / 10^{6}$ person rem and the maximum by $458 / 10^{6}$ person rem. Thus, these two risk coefficients were used to define a range of estimated cancer deaths.
2. Genetic Effects (from Page $1 \& 2$ BEIR-I)
a. Based on specific defects 5 rem/30 year reproductive generation would cause in the first generation 100-1800 cases of dominant diseases and defects per year (3.6 million births/year) or 5 times this amount at equilibrium. The 1800 cases represent an increase of 0.05% incidences per year first generation and 0.25% at equilibrium. In addition there would be a few chromosomal defects and recessive diseases and a few congenial defects due to a single gene defect and chromosome aberrations.

The total incidence at equilibrium is 1100 to $27,000 /$ year. These at equilibrium, the maximum would be 0.75% or 0.15% in the first generation.

These are equivalent to 0.15% per rem at equilibrium and $0.03 \% / \mathrm{rem}$ in the first generation.
b. Based on overall ill health. Overall ill health: 5\% - 50% of ill health is proportional to the mutation rate using 20% and doubling dose of 20 rem, 5 rem per generation would eventually lead to a 5% increase in $i l l$ health.

Thus the rate of overall ill health is $1 \% / \mathrm{rem}$ at equilibrium or $0.2 \% / \mathrm{rem}$ in first generation.

For estimating the potential genetic derived health defects in the Bikini population it was decided to use a risk coefficient of 0.2% per rem in the first generation recognizing that it was probably very conservative.

B. BEIR-III

1. Cancer (Table V-4 of Typescript Edition)

Lifetime Risk of Cancer Death
(deaths $/ 10^{6} / \mathrm{rad}$)
Single exposure to Continous xposure

10 rad
to $1 \mathrm{rad} / \mathrm{yr}$

Mode 1	Absolute	Relative	Absolute	Relative
L-Q, $\overline{L Q-L}$	77	226	67	182*
L-L, $\overline{L-L}$	167	501	158	430*
Q-L, $\overline{\mathrm{Q}-\mathrm{L}}$	10	28	---	---

* In printed version these were 169 and 403, respectively. We used the risk coefficients that were derived for continuous exposure.

2. Birth Defects---pages $166-169$ (mean parental age $=30$ years) 1 rem per generation (1 rem parental exposure) per 10^{6} live offspring 5 to 75 birth defects, this is $0.0005--0.0075 \%-$ First generation.

Since the spontaneous rate is given as 10.7%, in the U.S. population, 1 rem will increase the rate from 10.7% to $10.7005--10.7075 \%$.

In terms of the spontaneous rate 1 rem per generation gives $\frac{0.0005}{10.7}=$ $0.000047=0.0047 \%$ increase and $\frac{0.0075}{10.7}=0.0007=0.07 \%$ increase .

IV. CALCULATIONS OF RISK

Table 1 gives the radiation dose values provided by Dr. Robison for use in developing estimates of increased health risks in the Bikini population.
A. Risks for 14 Different Living Conditions

1. Cancer Risks

Table 3 shows the calculations for estimates of increased cancer risk for 14 different living conditions.

Table 3 gives the calculations for the estimates of birth defects. B. Risk Estimates Based on BEIR-III

Table 4 gives risk estimates based on BEIR-III risk coefficients. These were calculated for comparison purposeseonly and were not used in the Bikini book. The highest estimates for cancer risk result from using the linear relative risk model and are about the same as those given in Table 2 for the relative risk model. The lowest estimates result from the linear-quadratic absolute risk model and are slightly less than those for the absolute model in Table 2. Thus, as far as estimates of cancer risk are concerned, those obtained using risk coefficients from BEIR-I are in the same general range as those obtained using risk coefficients from BEIR-III.

Risk estimates for birth defects obtained using the risk factor from BEIR-I gives values about three times those obtained using the upper value of the range of risk factors given in BEIR-III. If BEIR-III risk factors for birth defects represent a more enlightened assessment of this potential consequence of radiation exposure than the factor taken from BEIR-I for overall health defects, then the estimates in the Bikini book may be conservative by a factor of three.

APPENDIX

Estimates of Radiation Doses Received By Person Who Visited at Bikini for About 10 Years Until August 1978
A. Bone Marrow Doses -. Calculation of Average Dose (Values in mrem)

Male		Female	
1600	2600	260	430
1600	1600	1000	1500
300	710	1700	280
1300	510	810	770
1200	2100	1400	1100
1300	1800	700	430
1600	680	1500	2200
890	500	1700	1200
2400	1100	1600	1300
1300	350	900	900
1500	2700	1200	820
1900	1600	2100	1400
900	210	1500	1100
2100	2100	410	760
310	1400	400	1000
1500	1900	1300	300
370	1600	340	1400
1300	1900	1500	620
2300	1600	1200	670
1900	3000 (highest value)	2400	56,200 mrem
1600	$\overline{72,360}$ mrem	320	
480	$n=50$	1400	$\mathrm{n}=49$
1800		1600	
2000		1900	
2500		2300	Average dose to all people
2300		1100	72.36 rem
1900		1900	56.20 rem
590		1400	28.
1500		740	
2600		2200	$\overline{99}=1.2986=1.3$ per person

B. Whole Body Dose
Identification Number Age Total Whole Body Dose (mrem)

Table 1 ESTIMATED RADIATION DOSES TO RESIDENTS OF

00 응ㅇ 으오 00 으오 00 으으 00 으으

$$
\text { 응 } 00 \text { 으 응 여 응 으 응 여 }
$$

		$\stackrel{\substack{\circ \\ \sim}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \text { ON } \\ & \text { oig } \end{aligned}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\square}{\square}$	تٌom	글귝	～～～～	
		80897	\％	苟苐		8	웅웅	웅요	
		웅윴	员蔦	－in			※̌	～ニ゙	
		90	ヘ่	¢	$\stackrel{\sim}{\sim}$	$\stackrel{m}{m}$	$\stackrel{\text { \％}}{\text { O }}$	\sim	辰
		웅웅	只号	只品	鴶号	只品	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim} \sim$	
\underline{Z}									$\begin{array}{cc} 0 & 0 \\ 0 & 1 \\ 10 & 0 \\ \times & \times \\ \times & \infty \\ \infty & 0 \\ * & + \end{array}$

Table 4

					Risk E	Birth Defects				
	Cancer									
	Total Person rem	Relative ${ }^{\text {Risk }}$		Absolute		Number of Births in 30 Yrs	$\left\|\begin{array}{c} 30-\mathrm{Yr} \text { Whole } \\ \text { Body Dose (rem) } \end{array}\right\|$	Birth Defects (5-75/10/rem)	Spontaneous Number	\% Increase***
		$\begin{aligned} & L-Q \\ & 182^{*} \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathrm{L} \\ & 430 \end{aligned}$	$\begin{aligned} & L-Q \\ & 67 \end{aligned}$	$\begin{array}{r} \mathrm{L}-\mathrm{L} \\ 158 \\ \hline \end{array}$					
1	3054 6108	$\xrightarrow{.556}$	1.31 2.63	.205 .409	. .483 .965	$\begin{aligned} & 1300 \\ & 1300 \end{aligned}$	2.8 5.4	$\begin{aligned} & .0182-.27^{* *} \\ & .035-.527 \end{aligned}$	139 139	$\begin{aligned} & 0.19 \\ & 0.38 \end{aligned}$
3 4	25450 47846	$\left\lvert\, \begin{aligned} & 4.63 \\ & 8.71 \end{aligned}\right.$	10.94 20.57	1.71 3.21	4.02 7.56	$\begin{aligned} & 1300 \\ & 1300 \end{aligned}$	24.0 44.0	$.156-2.34$ $.286-4.29$	139 139	$\begin{aligned} & 1.68 \\ & 3.1 \end{aligned}$
5 6	3461 6617	.63 1.20	1.49 2.85	.23 .44	.547 1.05	$\begin{aligned} & 1300 \\ & 1300 \end{aligned}$	3.2 5.9	$.021-.312$ $.038-.575$	139 139	$\begin{aligned} & 0.22 \\ & 0.414 \end{aligned}$
7 8	957 1978	. 174	. 41	.064 .133	.15 .313	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	1.4 2.8	$\begin{aligned} & .0056-.084 \\ & .011-.168 \end{aligned}$	85.6 85.6	$\begin{aligned} & 0.098 \\ & 0.196 \end{aligned}$
9 10	$\begin{aligned} & 1085 \\ & 2105 \end{aligned}$.197 .383	.467 .905	.073 .141	.17 .33	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	1.6 3.0	$\begin{aligned} & .0064-.096 \\ & .012-.18 \end{aligned}$	85.6 85.6	$\begin{aligned} & 0.112 \\ & 0.21 \end{aligned}$
11 12	$\begin{aligned} & 446 \\ & 910 \end{aligned}$.081 .166	$\begin{aligned} & .192 \\ & .39 \end{aligned}$	$\begin{aligned} & .0298 \\ & .061 \end{aligned}$	$\begin{aligned} & .0705 \\ & .144 \end{aligned}$	$\begin{aligned} & 550 \\ & 550 \end{aligned}$.96 1.9	$\begin{aligned} & .0026-.04 \\ & .0052-.078 \end{aligned}$	$\begin{aligned} & 58.85 \\ & 58.85 \end{aligned}$	$\begin{aligned} & 0.068 \\ & 0.13 \end{aligned}$
13 14	520 953	.095 .173	. 224	.035 .064	. 082	$\begin{aligned} & 550 \\ & 550 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & .0030-.045 \\ & .0055-.0825 \end{aligned}$	$\begin{aligned} & 58.85 \\ & 58.85 \end{aligned}$	$\begin{aligned} & 0.076 \\ & 0.14 \end{aligned}$
* Risk Coefficient$182 \times 10^{-6} \operatorname{man} r$			23	4 5		6	7	8	9	10
			** eg. $\frac{2.8 \mathrm{rem} \times 5 \times 1300 \text { births }}{10^{6}}$							

